/
Convolution Pyramids Zeev Farbman The Hebrew University Raanan Fattal The Hebrew University Convolution Pyramids Zeev Farbman The Hebrew University Raanan Fattal The Hebrew University

Convolution Pyramids Zeev Farbman The Hebrew University Raanan Fattal The Hebrew University - PDF document

phoebe-click
phoebe-click . @phoebe-click
Follow
569 views
Uploaded On 2014-12-13

Convolution Pyramids Zeev Farbman The Hebrew University Raanan Fattal The Hebrew University - PPT Presentation

Left gradient 64257eld integration Middle membrane interpolation Right scattered data interpolation The insets show the shapes of the corresponding kernels Abstract We present a novel approach for rapid numerical approximation of convolutions with 6 ID: 23293

Left gradient 64257eld integration

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Convolution Pyramids Zeev Farbman The He..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

targetÞltertoapproximate,weÞrstusenumericaloptimizationtodesignasetofsmallkernels,whicharethenusedtoperformtheanalysisandsynthesisstepsofourmultiscaletransform.Oncetheoptimizationhasbeendone,theresultingtransformcanbeappliedtoanysignalinlineartime.WedemonstratethatourmethodiswellsuitedfortaskssuchasgradientÞeldintegration,seamlessim-agecloning,andscattereddatainterpolation,outperformingexist-ingstate-of-the-artmethods.Keywords:convolution,GreenÕsfunctions,Poissonequation,seamlesscloning,scattereddatainterpolation,ShepardÕsmethodLinks:DLPDFWEB1IntroductionManytasksincomputergraphicsandimageprocessinginvolveapplyinglargelineartranslation-invariant(LTI)Þlterstoimages.Commonexamplesincludelow-andhigh-passÞlteringofimages,andmeasuringtheimageresponsetovariousÞlterbanks.SomelessobvioustasksthatcanalsobeaccomplishedusinglargeLTIÞltersaredemonstratedinFigure1:reconstructingimagesbyintegratingtheirgradientÞeld[Fattaletal.2002],Þttingasmoothmembranetointerpolateasetofboundaryvalues[P«erezetal.2003;Agarwala2007],andscattereddatainterpolation[Lewisetal.2010].WhileconvolutionisthemoststraightforwardwayofapplyinganLTIÞltertoanimage,itcomeswithahighcomputationalcost:O(n2)operationsarerequiredtoconvolveann-pixelimagewithakernelofcomparablesize.TheFastFourierTransformoffersamoreefÞcient,O(nlogn)alternativeforperiodicdomains[Brigham1988].Otherfastapproacheshavebeenproposedforcertainspecialcases.Forexample,Burt[1981]describesamultiscaleapproach,whichcanapproximateaconvolutionwithalargeGaussiankernelinO(n)timeathierarchicallysubsampledlocations.Wereviewthisandseveralotherrelatedapproachesinthenextsection.Inthiswork,wegeneralizetheseideas,anddescribeanovelmul-tiscaleframeworkthatisnotlimitedtoapproximatingaspeciÞckernel,butcanbetunedtoreproducetheeffectofanumberofusefullargeLTIÞlters,whileoperatinginO(n)time.SpeciÞcally,wedemonstratetheapplicabilityofourframeworktoconvolutionswiththeGreenÕsfunctionsthatspanthesolutionsofthePoissonequation,inversedistanceweightingkernelsformembraneinter-polation,andwide-supportGaussiankernelsforscattereddatain-terpolation.TheseapplicationsaredemonstratedinFigure1.Ourmethodconsistsofamultiscalescheme,resemblingtheLapla-cianPyramid,aswellascertainwavelettransforms.However,unlikethesemoregeneralpurposetransforms,ourapproachistocustom-tailorthetransformtodirectlyapproximatetheeffectofagivenLTIoperator.Inotherwords,whilepreviousmultiscalecon-structionsaretypicallyusedtotransformtheproblemintoaspacewhereitcanbebettersolved,inourapproachthetransformitself isthelengthofthe1Dkernels.Non-separablekernelsmaybeapproximatedbyseparableonesusingtheSVDdecompositionofthekernel[Perona1995].B-splineÞltersofvariousordersandscalesmaybeevaluatedatconstanttimeperpixelusingrepeatedintegration[Heckbert1986]orgeneralizedintegralimages[Derpanisetal.2007].ManymethodshavebeendevelopedspeciÞcallytoapproximateconvolutionswithGaussiankernels,becauseoftheirimportantroleinimageprocessing[Wells,III1986].OfparticularrelevancetothisworkisthehierarchicaldiscretecorrelationschemeproposedbyBurt[1981].ThismultiscaleschemeapproximatesaGaussianpyramidinO(n)time.SinceconvolvingwithaGaussianband-limitsthesignal,interpolatingthecoarserlevelsbacktotheÞneronesprovidesanapproximationtoaconvolutionwithalargeGaus-siankernelinO(n).However,BurtÕsapproximationisaccurateonlyforGaussiansofcertainwidths.BurtÕsideasculminatedintheLaplacianPyramid[BurtandAdel-son1983],andwerelaterconnectedwithwavelets[DoandVetterli2003].MorespeciÞcally,theLaplacianpyramidmaybeviewedasahigh-densitywavelettransformansformSelesnick2006].Theseideasarealsoechoedin[Fattaletal.2007],whereamultiscalebilateralÞlterpyramidisconstructedinTheLaplacianpyramid,aswellasvariousotherwavelettrans-forms[Mallat2008]decomposeasignalintoitslowandhighfrequencies,whichwasshowntobeusefulforavarietyofanal-ysisandsynthesistasks.Inparticular,itispossibletoapproxi-matetheeffectofconvolutionswithlargekernels.However,eventhoughtheseschemesrelyonrepeatedconvolution(typicallywithsmallkernels),theyarenottranslation-invariant,i.e.,iftheinputistranslated,theresultinganalysisandsynthesiswillnotdifferonlybyatranslation.ThisisduetothesubsamplingoperationstheseschemesuseforachievingtheirfastO(n)performance.Ourschemealsousessubsampling,butinamorerestrictedfashion,whichwas time,usingFFToverperiodicdomains.However,thereareevenfasterO(n)solversforhandlingspeciÞctypesofsuchequationsoverbothperiodicandnon-periodicdomains.Themultigrid[Trottenbergetal.2001]methodandhier-archicalbasispreconditioning[Szeliski1990]achievelinearperfor-mancebyoperatingatmultiplescales.Astate-of-the-artmultigridsolverforlargegradientdomainproblemsisdescribedbyKazhdanandHoppe[2008],andaGPUimplementationforsmallerproblemsisdescribedbyMcCannandPollard[2008].Sincethematricesintheselinearsystemsarecirculant(ornearlycirculant,dependingonthedomain),theirinverseisalsoacircu-lantconvolutionmatrix.Hence,inprinciple,thesolutioncanbeobtained(orapproximated)byconvolvingtheright-handsidewithakernel,e.g.,theGreenÕsfunctionincasesoftheinÞnitePoisson Agarwala[2007]describesadedicatedquad-treebasedsolverforsuchsystems,whileFarbmanetal.[2009]avoidsolvingalinearsystemaltogetherbyusingmean-valueinterpolation.InSection5weshowhowtoconstructsuchmembranesevenmoreefÞcientlybycastingtheproblemasaratioofconvolutions[Carretal.2003].Thisapproachcanalsobeusefulinmoregeneralscattereddatain-terpolationscenarios[Lewisetal.2010],whentherearemanydatapointstobeinterpolatedorwhenadenseevaluationoftheinterpo-latedfunctionisneeded.OurworkprovidesanefÞcientapproxi-mationforscattereddatainterpolationwhereitisimportanttouselargeconvolutionÞltersthatpropagatetheinformationtotheentire quenciesaretypicallyneededatahigherspectralaccuracyand,hence,largelow-passÞltersareused.SubbandarchitecturessuchaswavelettransformsandLaplacianpyramidsrelyonaspectralÒdivide-and-conquerÓstrategywhere,ateveryscale,thespectrumispartitionedviaÞlteringandthenthelowerendofthespectrum,whichmaybesubsampledwithouta Forwardtransform(analysis)}3:a0=a4:foreachlevell=0...L!1do5:al0=al6:al+1="(h1#al)7:endfor8:{Backwardtransform(synthesis)foreachlevell=L!1...0do11:öal=h2#($öal+1)+g#al012:endforFigure2:Oursubbandarchitectureßowchartandpseudocode.andiscapableofisolatinglow-frequencymodesuptothelargestspatialscale(theDCcomponentoftheimage).Whileitmaynotbeamajorobstacleforsomeapplications,thesedecompositionssufferfromtwomainshortcomings.First,there-sultingtransformedcoordinates,andthereforetheoperationsper-formedusingthesecoordinates,arenotinvarianttotranslation.Thus,unlikeconvolution,shiftingtheinputimagemaychangetheoutcomebymorethanjustaspatialoffset.Second,toachievetheO(n)runningtime,itisnecessarytouseÞniteimpulseresponseÞlters.TheseÞlterscanachievesomespatialandspectrallocaliza-tionbutdonotprovideanidealpartitioningofthespectrum.Aswedemonstratehere,thesepropertiesarecriticalforsomeappli- wherethesuperscriptldenotesthelevelinthehierarchy,al0istheunÞltereddatakeptateachlevel,and"denotesthesubsamplingoperator.Thetransformisinitiatedbysettinga0=a,whereaistheinputsignaltobeÞltered.Thebackwardtransformation(synthesis)consistsofupsamplingbyinsertingazerobetweeneverytwosamples,followedbyaconvolu-tion,withanotherÞlter, al0inourcase).Similarlytothehighdensitywavelettransformation[Selesnick2006],thischoiceismadeinordertominimizethesubsamplingeffectandtoincreasethetranslationinvariance.AssumingidealÞlteringwascomputationallyfeasible,h1andh2couldbechosensoastoperfectlyisolateandreconstructprogres-sivelylowerfrequencybandsoftheoriginaldata,inwhichcasetheroleofgwouldbetoapproximatethedesiredÞlteringoperation.However,sincewewanttokeepthenumberofoperationsO(n),theÞltersh fromexplicitana-lyticÞlterdesignmethodologies,wenumericallyoptimizetheseÞl-terssuchthattheirjointactionwillbestachievethedesiredÞlteringoperation.Insummary,ourapproachconsistsofidentifyingandal-locatingacertainamountofcomputationswithreducedamountof whereöa0FistheresultofourmultiscaletransformwiththekernelsFonsomeinputa.Inordertocarryoutthisoptimizationitre-mainstodeterminethetypesofthekernelsandthenumberoftheirunknownparameters.Thechoiceofthetrainingdataadependsontheapplication,andwillbediscussedinthenextsection.Notethatoncethisoptimizationiscompleteandthekernelshavebeenfound,ourschemeisreadytobeusedforapproximatingf#aonanygivensignala.Allofthekernelsusedtoproduceourresultsareprovidedinthesupplementarymaterial,andhencenofurtheroptimizationisrequiredtousetheminpractice.Inordertominimizethenumberoftotalarithmeticoperations,thekernelsinFshouldbesmallandseparable.ThespeciÞcchoicesreportedbelowcorrespond,inourexperiments,toagoodtrade-offbetweenoperationcountandapproximationaccuracy.Usinglargerand/ornon-separableÞltersincreasestheaccuracy,andhencethespeciÞcchoicedependsontheapplicationrequirements.Remark-ably,weobtainratheraccurateresultsusingseparablekernelsin !n=0wherenistheunitboundarynor-malvector,areenforced.GreenÕsfunctionsG(x,x')deÞnethefundamentalsolutionstothePoissonequation,andaredeÞnedby!G(x,x')="( log1%x!x'%.(7) thatusesa5-by-5kernelforh1,h2anda3-by-3kernelforgtobeparticularlyattractive,asitproducesresultsthatarevisuallyveryclosetothegroundtruth,whileemployingcompactkernels.Amoreaccuratesolution(virtuallyindistinguishablefromthegroundtruth)maybeobtainedbyincreasingthekernelsizesto7-by-7/5-by-5(F7,5)inexchangeforamodestincreaseinrunningtime,orevenfurtherto9-by-9/5-by-5(F9,5).Notethatwehavenoevidencethatthebest onvariousimagesizes.gridsizetime(5x5/3x3)time(7x7/5x5)(millions)(sec,singlecore)(sec,singlecore)0.260.00190.002851.040.0100.0154.190.0470.06516.770.190.2667.10.991.38Table1:Performancestatisticsforconvolutionpyramids.Re-portedtimesexcludediskI/Oandweremeasuredona2.3GHzIntelCorei7(2820qm)MacBookPro.Figure4(a)showsareconstructionofthefree-spaceGreenÕsfunc-tionobtainedbyfeedingourmethodacentereddeltafunctionasinput.Acomparisontothegroundtruth(thesolutionof( ableCPU-basedmultigridsolversforsuchreconstruction.Indeed,theplotsinFigure6conÞrmitssuperiorconvergence.However,formostpracticalgraphicsapplications,areconstructionerrorintherangeof0.001Ð0.0001issufÞcient,andourmethodisabletoachievethisaccuracyconsiderablyfasterthantheKazhdan-Hoppesolver,whilebeingsimplertoimplementandtoporttotheGPU.McCannandPollard[2008]describeaGPU-basedimplementationofamultigridsolver,which,atthetime,enabledtointegrateaone-megapixelimageabout20timespersecond,supportinginteractivegradientdomainpainting.OurcurrentsinglecoreCPU-basedim-plementationalreadyenablestointegratesuchanimage33times resolutiongrid. SuchmembraneshaveoriginallybeenbuiltbysolvingtheLaplaceequation[P«erezetal.2003].However,Farbmanetal.[2009]showedthatothersmoothinterpolationschemes,suchasmean-valueinterpolationmaybeusedaswell,offeringcomputationaladvantages.HereweshowhowtoconstructasuitablemembraneevenfasterbyapproximatingShepardÕsscattereddatainterpolationmethod[Shepard1968]usingaconvolutionpyramid.denotearegionofinterest(onadiscreteregulargrid),whoseboundaryvaluesaregivenbyb(x).Ourgoalistosmoothlyin-terpolatethesevaluestoallgridpointsinside#.ShepardÕsmethoddeÞnestheinterpolantratxasaweightedaverageofknownbound- isnon-zero,0otherwise).Intuitively,includingthechar-acteristicfunction$inthedenominatorensuresthattheweightsofthezerosinörarenotaccumulated.Again,weusetheoptimizationtoÞndasetofkernelsF,withwhichourconvolutionpyramidcanbeappliedtoevaluate(12).TodeÞnethetrainingdata,weset ],whichcomputesmeanvaluecoordinatesat edcfFigure8:GaussianÞlters:(a)OriginalImage(b)Exactconvolu-tionwithaGaussianÞlter(%=4)(c)Convolutionusingourap-proximationforthesame%.(d)Exactkernels(inred)withapprox-imatekernels(inblue).(e)exactGaussian(inred),approximationusing5x5kernels(inblue),approximationusing7x7kernels(ingreen).(f)showsamagniÞedpartof(e).6GaussiankernelsInthissectionwedemonstratehowtouseconvolutionpyramidstoapproximateconvolutionswithGaussiankernelse!% TheeffectiveÞltersthatBurtÕsmethodandintegralimagesproducearetruncatedinspace,i.e.,theyhaveaÞnitesupportthatdependsontheGaussianscale%.WhilethisisnotamajorissuewhentheÞlteringisusedforapplicationssuchasimageblurring,thistrun-cationhasasigniÞcanteffectwhentheÞltersareusedforscattereddatainterpolation,suchastheShepardÕsmethodoutlinedinthepre-vioussection.Inthisapplication,weneedthedatatopropagate,inamonotonicallydecreasingfashion,acrosstheentiredomain.Atruncatedkernelmayleadtodivisionsbyzeroin()ortointro-duceabrupttransitionsintheinterpolatedvalues.Figure9showsourapproximationoftwodifferentGaussianÞl-ters,differingintheirwidth.Theseapproximationswerecomputedusingthesmaller5-by-5kernels.TheapproximationofthewiderGaussianin(a)providesagoodÞtacrosstheentiredomain.ForthenarrowerGaussianin(b),theapproximationlosesitsrelativeaccuracyastheGaussianreachesverylowvalues.Thismaybe ACMTrans.Graph.22,3,313Ð318.PERONA,P.1995.Deformablekernelsforearlyvision.IEEETrans.PatternAnal.Mach.Intell.17,5,488Ð499.SELESNICK,I.2006.Ahigherdensitydiscretewavelettransform.IEEETrans.SignalProc.54,8(Aug.),3039Ð3048.SHANNO,D.F.1970.Conditioningofquasi-Newtonmethodsforfunctionminimization.MathematicsofComputation24,111