/
Divisors and line bundles Divisors and line bundles

Divisors and line bundles - PDF document

phoebe-click
phoebe-click . @phoebe-click
Follow
392 views
Uploaded On 2017-04-27

Divisors and line bundles - PPT Presentation

ItisnoweasytoseethatlinearlyequivalentdivisorsgiverisetoisomorphiclinebundlesandcanberecapturedfromthosebyconsideringzerosofmeromorphicsectionsIftheyaree ectivethentheycanberecapturedaszeroesofho ID: 340107

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Divisors and line bundles" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

LinebundlesAlinebundleLoverXisa bration:L!Xwhose bersarelines(C)andsuchthatthe brationislocallytrivial.Sowhatdoesthatmean?WeshouldconsiderXtobecoveredwithopensubsetsUioverwhichistrivial.Wecanthenwrite�1(Ui)=UiC.Thoseneedtobegluedtogether,andhowdoweexpressglueingdata?Wecanthinkoflocalco-ordinatesas(zi;t)for�1(Ui)whereziissotospeakthelocal berco-ordinate.NowifwehavetwoopencoversintersectinginUij=Ui\Ujweshouldhavezi=ij(t)zjwhereij(t)6=0andde nedontheintersectionUij.ItisnaturaltothinkofijasholomorphicfunctionsifwewantLtobeaholomorphicbundle.Nowthoseijarereferredtoasthetransitionfunctions,andtheycannotbearbitrarilychosen.IfUijk=Ui\Uj\Ukisnon-emptywehavemanyidenti cationsoverpointsinUijkandtheyhavetobecompatible.Whatisthecompatibilitycondition?Itiseasilyseentobegivenbyik=ijjkwherewemakethenaturalconventionthatij=1=jiandhenceii=1.Nowthosetransitionfunctionsarenotuniquelydeterminedbythelinebun-dle,afterallwecane ectchangesofthe berco-ordinates.Chosingnon-zeroholomorphicfunctionsfionUiwecanintroducenewco-ordinatesz0i=fiziandthenewtransitionfunctions0ijwillbetransformedaccordingly0ij=fi=fjij.Itisclearthatifijsatis esthecompatibilityconditionsodoes0ij.Inpartic-ularifwecan ndfunctionsfisuchthatij=fi=fjthenwecanusethosetogetaglobaltrivializationofL,namelytowriteLasCX.DigressiononCzechcohomologyByaCzechcochainismeantfunctionstakingvaluesinsomesheafFandde-pendingonintersectionsofopensetsofanopencovering.Iwillnotgiveaformalde nitionofasheaf,itiseasyenough,butyoushouldthinkaboutitasfunctionsde nedonopensubsetsofatopologicalsetX.Ifthefunctionsareconstant,wethinkofthesheafasoneoflocallyconstantfunctions.Bya0-cochainwecanthinkofasfunctionsfUde nedonanopensetUinthecovering,whilea1-cochainisgivenbyfunctionsfUVde nedonU\Vwhilea2-cochainissimilarlygivenbyfunctionsfUVWde nedonintersectionsU\V\W.Nowwecande neaboundaryoperator@de nedasfollows(@f)UV=fU�fVand(@f)UVW=fUV�fUW+fVWandsoon.Whatdoesitmeanthat@f=0fora0-chain?SimplythatfU=fVonU\V.Inotherwordsthatwecan ndafunctionFgloballyde nedsuchthatFU=fUwesaythatthelocaldatapatchesuptoagloballyde nedfunction.Whatdoesitmeanthat@f=0fora1-chain?NamelythatfUV=fUW+fWV(NotethatfXY=�fYX).Thisisalmostthesamethingasthecompatibilityconditionfortransitionfunctions,exceptthatitiswrittenadditivelyinsteadofmultiplicatively.Furthermorea1boundaryisoftheformfu�fvwhichistheadditiveinterpretationofthemultiplicativepresentationoftransitionfunctionswhicharetrivial.2 Itisnoweasytoseethatlinearlyequivalentdivisorsgiverisetoisomorphicline-bundles,andcanberecapturedfromthosebyconsideringzerosofmero-morphicsections.Iftheyaree ective,thentheycanberecapturedaszeroesofholomorphicsections.KeyPoint.Thecrucialdataaregivenbytransitionfunctions.Thosecanbemanipulatedveryeasily,muchmoreeasilythanindividualsectionsandcorrespondingdivisors.Inherentinthemisthe'movingproperty'andassuchtheywillgiveaneasyproofofBezoutaswewillseelater.FunctorialpropertiesofLine-bundlesIfwehaveamap:X!Ywecanliftanyline-bundleLofYtoonedenoted(L)aboveX.Thecorrespondingline-bundleiscalledthepull-backandisalmosttriviallyde nedbyconsideringitstransitionfunctions(ij):=ij()bycomposition.Ifisaninclusion,thenwesimplyrestrictthetransitionfunctionsfromYtoX.MapsassociatedtolinearsystemsIfwehavetwosectionss0;s1tothesameline-bundlethenwehaveseenthats1=s0isawell-de nedmeromorphicfunction,andhenceamapintoP1.Wecanalsorepresentitasthemapx7!(s0(x);s1(x).Moregenerally,letVbealinearsubspaceofH0(D).Suchaspaceisreferredtoasalinearsystem.Ifwechooseabasiss0;s1;:::snforitwegetamapofXintoPnintheobviousway.Nowweshouldbecareful.Ifallsi(x)=0wesaythatxbelongstothebaselocusofthelinearsystem,anditisonlyoutsidethebaselocusthatwehaveawell-de nedmap.Wecanmakethemapsintoprojectivespaceco-ordinatefree,providedthatwemapintotheirduals.Infactifxdoesnotbelongtothebase-locus,thesectionsvanishingatxformahyperplane.Givenamapp:X!Pnassociatedtoaline-bundleL.WecanthenconsiderthehyperplanesHofPnandlookatp(H)thosearereferredtoasthehyperplanesections,andtheycorrespondtodivisorsofsectionsofLandallsuchoccurinthisway.Ifweconsideranarbitrarylinearsystemi.e.alinearsubspaceofthecom-pletelinearsystem,themapontothatcanbethoughtofasaprojectionfromthecompletePn.Pencils,whichwealreadyhaveencountered,aresimply1-dimensionallinearsystems.Theygiveriseto brationsoverP12-dimensionalsystemsarecallednetsclassically,while3-dimensionalarereferredtoaswebs.4 1-formsandvector eldsontheRiemannsphereNowbythechainrule@F=@z=(@F=@w)(dw=dz)thusavector eldgivenbys0(z)@ @z=s1(w)@ @wwillsatisfys0(z)(dw=dz)=s1(w)ors0(z)=�z2s1(w).Thustherewillbeplentyofholomorphicvector eldsonthesphere,infacttheyaregivenbythebinaryquadrics.Thedualcaseof1-formsisdi erent.Clearlydw=dw dzdzandhenceifwehaves0(z)dz=s1(w)dwweobtains0(z)=�z�2s1(z)hencetherearenoglobal1-formsonthesphere,exceptthetrivial.WehavethusthefundamentalTheorem:ThedegreeofthecanonicallinebundleofCP1is�2MapsoflinearsystemsonCP1ThemapCP1!CP2givenbyallbinaryquadricshasasanimageacurveofdegree2i.e.aconic.Andconverselyallconicsoccurinthiswayaswehavealreadynoticed.ThemapCP1!CP3givenbyallbinarycubicshasasanimageacurveofdegree3.ItisbiholomorphictoCP1andisthusasocalledrationalcurve,referredtoasthetwistedcubic.Ifweconsiderthelinearsystemofcubicspassingthrougha xedpointonCP1thisformsanetandhencegivesaprojectionofthetwistedcubicontotheplane.Theimagewillbeaconic,aswecanwritethecubicsasquadricsmul-tipliedwithaconstantlinearfactorcuttingoutthe xedpoint.GeometricallyitmeansthatforanypointponthetwistedcubicCthatcurveiscontainedinaquadriccone.Giventwoquadricconescorrespondingtothepointsp;qtheirintersectionwillconsistofthetwistedcubicalongwiththelinepassingthroughpandq.Thetwistedcubicisnotacompleteintersection,youneedthreequadricstocutitout.Givenanysuchthreequadricstheywillnotonlycutitoutbutalsogenerateallquadricswhichcontainthetwistedcubic,whichconstituteanetwiththetwistedcubicasabaselocus.6