PDF-II.Evaluatethelimit,ifitexists1.limx!1x24x

Author : phoebe-click | Published Date : 2016-03-22

x23x42limx0p 2xp 2x x3limx93p x 9xx24limh0xh3x3 h5limh0xh2x2 h2 Answerlimx31 31 x 3xlimx3x3 3x 3xlimx3x3 3x1 3xlimx31 3x1 331 96limh0p xhp x hAnswe

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "II.Evaluatethelimit,ifitexists1.limx!1x..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

II.Evaluatethelimit,ifitexists1.limx!1x24x: Transcript


x23x42limx0p 2xp 2x x3limx93p x 9xx24limh0xh3x3 h5limh0xh2x2 h2 Answerlimx31 31 x 3xlimx3x3 3x 3xlimx3x3 3x1 3xlimx31 3x1 331 96limh0p xhp x hAnswe. Example1.Forthefunctionfgraphedbelow, ndthefollowing: -  6 ?yx01234567123456712345671234567 eCCCCCCseBBBBes@@@es1.limx!3f(x)=2.limx!3+f(x)=3.limx!3f(x)=4.f(3)=5 p x+53=limx!4(2x8) (p x+53)(p x+5+3) (p x+5+3)=limx!4(2x8)(p x+5+3) (p x+5)2+3p x+53p x+59=limx!4(2x8)(p x+5+3) x4=limx!42(x4)(p x+5+3) x4=limx!42(p x+5+3)=2(p 4+5+3)=12:Trythefollowingexerc 2+1 31 4+1 5toobtainanyrealnumberasthesum!Asforthesecondargument,onemightobject(asCalletdid)thatformnwehave1xm 1xn=1xm+xnxm+n+x2n;sothatbyl'hopital'srule11+11+=limx!11xm 1xn=m n:B Defn:limx!af(x)=Lifforall0,thereexistsa0suchthat0jxajimpliesjf(x)LjShowlimx!12= Defn:limx!af(x)=Lifxclosetoaandxaimpliesf(x)isclosetoL.Defn:limx!a+f(x)=Lifxclosetoaandx moreexamplesoflimits {TypesetbyFoilTEX{1 SubstitutionTheoremfor TrigonometricFunctions lawsforevaluatinglimits {TypesetbyFoilTEX{2 TheoremA. Foreachpoint c infunction'sdomain: limx!csinx=sinc;limx!cco 1 2FIRSTTHINGSFIRST(5)Duringclasstheinstructorhasthe naldecisionondeterminingwhetheranar-gumentmaystandornot.Hisverdictmaystillbechallengedafteraproofis\published"(seerule(6)).(6)Ifsomeoneothertha -sizedPDF12lesoNorthAmericansshouldtakecarenottoinadvertentlygenerateletterpaper-sizedPDF12lesThispapertemplateshouldpreventthatfromhappeningifthepdflatexprogramisusedtogeneratethePDF12leTheabstractsh CONTENTSvChapter16.APPLICATIONSOFTHEINTEGRAL12116.1.Background12116.2.Exercises12216.3.Problems12716.4.AnswerstoOdd-NumberedExercises130Part5.SEQUENCESANDSERIES131Chapter17.APPROXIMATIONBYPOLYNOMIALS1 Introductiony=fxLimits&ContinuityRatesofchangeandtangentstocurves2 Averagerateofchangey x=fx2fx1 x2x1(1)Equationforthesecantline:Y=y xxx1+fx1Tangent -secantinthelimitx2!x1(Or,x!0).Slopeoftange (x1)21A-3Identifyeachofthefollowingaseven,odd,orneithera)x3+3x 1x4b)sin2xc)tanx 1+x2d)(1+x)4e)J0(x2),whereJ0(x)isafunctionyouneverheardof1A-4a)Showthateverypolynomialisthesumofanevenandanoddfunction t esint�1dt.(b) 2R0ln(sint)dt(c)1R01 t2+p tdt(d)1R0cos1 t2dt.(e)1R0sint3dt(f)1R1sin2t p tesintdt(g)1R1tsint4dt(h) 4R0dt t�sint.(i)1R11�5sin2t t2+p tdt(j)1R0et 2 p 1�costdt(k)1R1t g(x)=limx!af(x) g(x)limx!ah(x) g(x)=00=0:Thisshowsthatf(x)h(x)=o(g(x)).Therefore,afunctionoftheformo(g(x))o(g(x))isalsooftheformo(g(x))andwewritethisfactaso(g(x))o(g(x))=o(g(x)).2.

Download Document

Here is the link to download the presentation.
"II.Evaluatethelimit,ifitexists1.limx!1x24x"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents