PDF-Defn:limx!af(x)=Lifxclosetoa(exceptpossiblyata)impliesf(x)isclosetoL.
Author : kittie-lecroy | Published Date : 2016-07-11
DefnlimxafxLifforall0thereexistsa0suchthat0jxajimpliesjfxLjShowlimx12 DefnlimxafxLifxclosetoaandxaimpliesfxisclosetoLDefnlimxafxLifxclosetoaandx
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Defn:limx!af(x)=Lifxclosetoa(exceptpossi..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Defn:limx!af(x)=Lifxclosetoa(exceptpossiblyata)impliesf(x)isclosetoL.: Transcript
DefnlimxafxLifforall0thereexistsa0suchthat0jxajimpliesjfxLjShowlimx12 DefnlimxafxLifxclosetoaandxaimpliesfxisclosetoLDefnlimxafxLifxclosetoaandx. Example1.Forthefunctionfgraphedbelow,ndthefollowing: - 6 ?yx01234567 1 2 3 4 5 6 71234567 1 2 3 4 5 6 7 e CCCCCCse BBBBes@@@ es 1.limx! 3 f(x)=2.limx! 3+f(x)=3.limx! 3f(x)=4.f( 3)=5 p x+5 3=limx!4(2x 8) (p x+5 3)(p x+5+3) (p x+5+3)=limx!4(2x 8)(p x+5+3) (p x+5)2+3p x+5 3p x+5 9=limx!4(2x 8)(p x+5+3) x 4=limx!42(x 4)(p x+5+3) x 4=limx!42(p x+5+3)=2(p 4+5+3)=12:Trythefollowingexerc 2+1 3 1 4+1 5 toobtainanyrealnumberasthesum!Asforthesecondargument,onemightobject(asCalletdid)thatformnwehave1 xm 1 xn=1 xm+xn xm+n+x2n ;sothatbyl'hopital'srule1 1+1 1+=limx!1 1 xm 1 xn=m n:B x2 3x 42.limx!0p 2+x p 2 x x3.limx!93 p x 9x x24.limh!0(x+h)3 x3 h5.limh!0(x+h) 2 x 2 h2 Answer:limx! 31 3+1 x 3+x=limx! 3x+3 3x 3+x=limx! 3x+3 3x1 3+x=limx! 31 3x=1 3( 3)= 1 96.limh!0p x+h p x hAnswe Selected Exercises. Goals. . Introduce . big-O . & big. -. Omega. S. how . how . to estimate . the size of functions using this notation.. Copyright © Peter . Cappello. 2. Preface. You may use . moreexamplesoflimits {TypesetbyFoilTEX{1 SubstitutionTheoremfor TrigonometricFunctions lawsforevaluatinglimits {TypesetbyFoilTEX{2 TheoremA. Foreachpoint c infunction'sdomain: limx!csinx=sinc;limx!cco Defn:IfXisstationarytheautocovariancefunctionofXisCX(h)=Cov(X0;Xh).Defn:IfXandYarejointlystationarythenthecross-covariancefunctionisCXY(h)=Cov(X0;Yh).NoticethatCX( h)=CX(h)andCXY(h)=CYX( h)forallhands Selected Exercises. Goals. . Introduce . big-O . & big. -. Omega. S. how . how . to estimate . the size of functions using this notation.. Copyright © Peter . Cappello. 2. Preface. You may use . Application Link:. bit.ly/hab18. CSCI0170. Lecture recorded; see course website.. Today’s topics. The Racket REPL. BNF for Racket (so far). Semantics: the rules of processing (so far). Definitions. -sizedPDF12lesoNorthAmericansshouldtakecarenottoinadvertentlygenerateletterpaper-sizedPDF12lesThispapertemplateshouldpreventthatfromhappeningifthepdflatexprogramisusedtogeneratethePDF12leTheabstractsh Introductiony=fxLimits&ContinuityRatesofchangeandtangentstocurves2 Averagerateofchangey x=fx2 fx1 x2 x1(1)Equationforthesecantline:Y=y xx x1+fx1Tangent -secantinthelimitx2!x1(Or,x!0).Slopeoftange (x 1)21A-3Identifyeachofthefollowingaseven,odd,orneithera)x3+3x 1 x4b)sin2xc)tanx 1+x2d)(1+x)4e)J0(x2),whereJ0(x)isafunctionyouneverheardof1A-4a)Showthateverypolynomialisthesumofanevenandanoddfunction t esint1dt.(b) 2R0ln(sint)dt(c)1R01 t2+p tdt(d)1R0cos1 t2dt.(e)1R0sint3dt(f)1R1sin2t p tesintdt(g)1R1tsint4dt(h) 4R0dt tsint.(i)1R115sin2t t2+p tdt(j)1R0et 2 p 1costdt(k)1R1t g(x)=limx!af(x) g(x)limx!ah(x) g(x)=00=0:Thisshowsthatf(x)h(x)=o(g(x)).Therefore,afunctionoftheformo(g(x))o(g(x))isalsooftheformo(g(x))andwewritethisfactaso(g(x))o(g(x))=o(g(x)).2.
Download Document
Here is the link to download the presentation.
"Defn:limx!af(x)=Lifxclosetoa(exceptpossiblyata)impliesf(x)isclosetoL."The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents