/
Proceedings of the International Congress of Mathematicians Hyderabad India  Nonasymptotic Proceedings of the International Congress of Mathematicians Hyderabad India  Nonasymptotic

Proceedings of the International Congress of Mathematicians Hyderabad India Nonasymptotic - PDF document

phoebe-click
phoebe-click . @phoebe-click
Follow
456 views
Uploaded On 2014-12-17

Proceedings of the International Congress of Mathematicians Hyderabad India Nonasymptotic - PPT Presentation

The classical random matrix theory is mostly focused on asymptotic spectral properties of random matrices as their dimensions grow to in64257nity At the same time many recent applications from convex geometry to functional analysis to information th ID: 25280

The classical random matrix

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Proceedings of the International Congres..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2M.Rudelson,R.VershyninthedimensionsN;ngrowtoin nitywhiletheaspectration=Nconvergestoanon-randomnumbery2(0;1],thespectrumofthenormalizedWishartmatri-ces1 NWN;nisdistributedaccordingtotheMarchenko-Pasturlawwithdensity1 2xyp (b�x)(x�a)supportedon[a;b]wherea=(1�p y)2,b=(1+p y)2.ThemeaningoftheconvergenceissimilartotheoneinWigner'ssemicirclelaw.Itiswidelybelievedthatphenomenatypicallyobservedinasymptoticrandommatrixtheoryareuniversal,thatisindependentoftheparticulardistributionoftheentriesofrandommatrices.Byanalogywithclassicalprobability,whenweworkwithindependentstandardnormalrandomvariablesZi,weknowthattheirnormalizedsumSn=1 p nPni=1Ziisagainastandardnormalrandomvariable.Thissimplebutusefulfactbecomessigni cantlymoreusefulwhenwelearnthatitisasymptoticallyuniversal.Indeed,TheCentralLimitTheoremstatesthatifinsteadofnormaldistributionZihavegeneralidenticaldistributionwithzeromeanandunitvariance,thenormalizedsumSnwillstillconverge(indistribution)tothestandardnormalrandomvariableasn!1.Inrandommatrixtheory,universalityhasbeenestablishedformanyresults.Inparticular,Wigner'ssemicirclelawandMarchenko-Pasturlawareknowntobeuniversal{liketheCentralLimitTheorem,theyholdforarbitrarydistributionofentrieswithzeromeanandunitvariance(see[60,6]forsemi-circlelawand[95,5]forMarchenko-Pasturlaw).Asymptoticrandommatrixtheoryo ersremarkablyprecisepredictionsasdi-mensiongrowstoin nity.Atthesametime,sharpnessatin nityisoftencoun-terweightedbylackofunderstandingofwhathappensin nitedimensions.Letusbrie yreturntotheanalogywiththeCentralLimitTheorem.OneoftenneedstoestimatethesumofindependentrandomvariablesSnwith xednumberoftermsnratherthaninthelimitn!1.InthissituationonemayturntoBerry-Esseen'stheoremwhichquanti esdeviationsofthedistributionofSnfromthatofthestandardnormalrandomvariableZ.Inparticular,ifEjZ1j3=M1thenjP(Snz)�P(Zz)jC 1+jzj3M p n;z2R;(1.1)whereCisanabsoluteconstant[11,23].NotwithstandingtheoptimalityofBerry-Esseeninequality(1.1),onecanstillhopeforsomethingbetterthanthepolynomialboundontheprobability,especiallyinviewofthesuper-exponentialtailofthelimitingnormaldistribution:P(jZj�z).exp(�z2=2).Betterestimateswouldindeedemergeintheformofexponentialdeviationinequalities[61,47],butthiswouldonlyhappenwhenwedropexplicitcomparisonstothelimitingdistributionandstudythetailsofSnbythemselves.Inthesimplestcase,whenZiarei.i.d.meanzerorandomvariablesboundedinabsolutevalueby1,onehasP(jSnj�z)2exp(�cz2);z0;(1.2)wherecisapositiveabsoluteconstant.Suchexponentialdeviationinequalities,whichareextremelyusefulinanumberofapplications,arenon-asymptoticresultswhoseasymptoticprototypeistheCentralLimitTheorem.Asimilarnon-asymptoticviewpointcanbeadoptedinrandommatrixtheory.Onewouldthenstudyspectralpropertiesofrandommatricesof xeddimensions. 4M.Rudelson,R.Vershyninthefactorsmax(A).Theextremesingularvaluesareclearlyrelatedtotheoper-atornormsofthelinearoperatorsAandA�1actingbetweenEuclideanspaces:smax(A)=kAkandifAisinvertiblethensmin(A)=1=kA�1k.Understandingthebehaviorofextremesingularvaluesofrandommatricesisneededinmanyapplications.Innumericallinearalgebra,theconditionnumber(A)=smax(A)=smin(A)oftenservesasameasureofstabilityofmatrixalgo-rithms.Geometricfunctionalanalysisemploysprobabilisticconstructionsoflinearoperatorsasrandommatrices,andthesuccessoftheseconstructionsoftendependsongoodboundsonthenormsoftheseoperatorsandtheirinverses.Applicationsofdi erentnatureariseinstatisticsfromtheanalysisofsamplecovariancematricesAA,wheretherowsofAareformedbyNindependentsamplesofsomeunknowndistributioninRn.SomeotherapplicationsarediscussedinSection5.AsymptoticbehaviorofextremesingularvaluesWe rstturntotheasymptotictheoryfortheextremesingularvaluesofrandommatriceswithin-dependententries(andwithzeromeanandunitvariancefornormalizationpur-poses).FromMarchenko-PasturlawweknowthatmostsingularvaluesofsuchrandomNnmatrixAlieintheinterval[p N�p n;p N+p n].Undermildadditionalassumptions,itisactuallytruethatallsingularvaluesliethere,sothatasymptoticallywehavesmin(A)p N�p n;smax(A)p N+p n:(2.1)Thisfactisuniversalanditholdsforgeneraldistributions.Thiswasestablishedforsmax(A)byGeman[29]andYin,BaiandKrishnaiah[97].Forsmin(A),Silverstein[71]provedthisforGaussianrandommatrices,andBaiandYin[8]gaveauni edtreatmentofbothextremesingularvaluesforgeneraldistributions:Theorem2.1(Convergenceofextremesingularvalues,see[8]).LetA=AN;nbeanNnrandommatrixwhoseentriesareindependentcopiesofsomerandomvariablewithzeromean,unitvariance,and nitefourthmoment.SupposethatthedimensionsNandngrowtoin nitywhiletheaspectration=Nconvergestosomenumbery2(0;1].Then1 p Nsmin(A)!1�p y;1 p Nsmax(A)!1+p yalmostsurely:Moreover,withoutthefourthmomentassumptionthesequence1 p Nsmax(A)isal-mostsurelyunbounded[7].Thelimitingdistributionoftheextremesingularvaluesisknownanduniversal.ItisgivenbytheTracy-WidomlawwhosecumulativedistributionfunctionisF1(x)=exp�Z1xu(s)+(s�x)u2(s)ds;(2.2)whereu(s)isthesolutiontothePainleveIIequationu00=2u3+suwiththeasymptoticu(s)1 2p s1=4exp(�2 3s3=2)ass!1.TheoccurrenceofTracy-Widomlawinrandommatrixtheoryandseveralotherareaswasthesubjectof 6M.Rudelson,R.VershyninProof(sketch).WewillsketchtheproofforN=n;thegeneralcaseissimilar.Theexpressionsmax(A)=maxx;y2Sn�1hAx;yimotivatesusto rstcontroltherandomvariableshAx;yiindividuallyforeachpairofvectorsx;yontheunitEuclideansphereSn�1,andafterwardstaketheunionboundoverallsuchpairs.For xedx;y2Sn�1theexpressionhAx;yi=Pi;jaijxjyiisasumofindependentrandomvariables,whereaijdenotetheindependententriesofA.Ifaijwerestandardnor-malrandomvariables,therotationinvarianceoftheGaussiandistributionwouldimplythathAx;yiisagainastandardnormalrandomvariable.Thispropertygeneralizestosubgaussianrandomvariables.Indeed,usingmomentgeneratingfunctionsonecanshowthatanormalizedsumofmeanzerosubgaussianrandomvariablesisagainasubgaussianrandomvariable,althoughthesubgaussianmo-mentmayincreasebyanabsoluteconstantfactor.ThusP�hAx;yi�s2e�cs2;s0:Obviously,wecannot nishtheargumentbytakingtheunionboundoverin nite(evenuncountable)numberofpairsx;yonthesphereSn�1.Inordertoreducethenumberofsuchpairs,wediscretizeSn�1byconsideringits"-netN"intheEuclideannorm,whichisasubsetofthespherethatapproximateseverypointofthesphereuptoerror".Anapproximationargumentyieldssmax(A)=maxx;y2Sn�1hAx;yi(1�")�2maxx;y2N"hAx;yifor"2(0;1):TogainacontroloverthesizeofthenetN",weconstructitasamaximal"-separatedsubsetofSn�1;thentheballswithcentersinN"andradii"=2formapackinginsidethecenteredballofradius1+"=2.Avolumecomparisongivestheusefulboundonthecardinalityofthenet:jN"j(1+2=")n.Choosingforexample"=1=2,wearewellpreparedtotaketheunionbound:P�smax(A)�4sP�maxx;y2N"hAx;yi�sjN"jmaxx;y2N"P�hAx;yi�s5n2e�cs2:Wecompletetheproofbychoosings=Cp n+twithappropriateconstantC. Byintegration,onecaneasilydeducefromProposition2.4thecorrectexpec-tationboundEsmax(A)C1(p N+p n).Thislatterboundactuallyholdsundermuchweakermomentassumptions.SimilarlytoTheorem2.1,theweakestpossi-blefourthmomentassumptionsuceshere.R.Latala[46]obtainedthefollowinggeneralresultformatriceswithnotidenticallydistributedentries:Theorem2.5(Largestsingularvalue:fourthmoment,non-iidentries[46]).LetAbearandommatrixwhoseentriesaijareindependentmeanzerorandomvariableswith nitefourthmoment.ThenEsmax(A)Chmaxi�XjEa2ij1=2+maxj�XiEa2ij1=2+�Xi;jEa4ij1=4i:ForrandomGaussianmatrices,amuchsharperresultthaninProposition2.4isduetoGordon[31,32,33]: 8M.Rudelson,R.Vershyninforc(n=N)2andlikeexp(�c1N2)forlarger.Forsquarematricesthemeaningofthisphenomenonisespeciallyclear.Largedeviationsofsmax(A)areproducedbyburstsofsingleentries:bothP(smax(A)Esmax(A)+t)andP(ja1;1jEsmax(A)+t)areofthesameorderexp(�ct2)fortEsmax(A).Incontrast,forsmalldeviations(forsmallert)thesituationbecomestrulymultidi-mensional,andTracy-Widomtypeasymptoticsappears.Themethodof[25]alsoaddressesthemoredicultsmallestsingularvalue.ForanNnrandommatrixAwhosedimensionsarenottooclosetoeachotherFeldheimandSodin[25]provedtheTracy{Widomlawforthesmallestsingularvaluetogetherwithanon-asymptoticversionoftheboundsmin(A)p N�p n:Psmin(A)p N�p n�p NN N�nC 1�p n=Nexp(�c0n3=2):(2.5)3.ThesmallestsingularvalueQualitativeinvertibilityproblemInthissectionwefocusonthebehaviorofthesmallestsingularvalueofrandomNnmatriceswithindependententries.Thesmallestsingularvalue{thehardedgeofthespectrum{isgenerallymoredicultandlessamenabletoanalysisbyclassicalmethodsofrandommatrixtheorythanthelargestsingularvalue,the\softedge".Thedicultyespeciallymanifestsitselfforsquarematrices(N=n)oralmostsquarematrices(N�n=o(n)).Forexample,wewereguidedsofarbytheasymptoticpredictionsmin(A)p N�p n,whichobviouslybecomesuselessforsquarematrices.AremarkableexampleisprovidedbynnrandomBernoullimatricesA,whoseentriesareindependent1valuedsymmetricrandomvariables.Eventhequalitativeinvertibilityproblem,whichaskstoestimatetheprobabilitythatAisinvertible,isnontrivialinthissituation.Komlos[44,45]showedthatAisinvertibleasymptoticallyalmostsurely:pn:=P(smin(A)=0)!0asn!1.LaterKahn,KomlosandSzemeredi[43]provedthatthesingularityprobabilitysatis espncnforsomec2(0;1).Thebasecwasgraduallyimprovedin[78,81],withthelatestrecordofpn=(1=p 2+o(1))nobtainedin[12].ItisconjecturedthatthedominantsourceofsingularityofAisthepresenceoftworowsortwocolumnsthatareequaluptoasign,whichwouldimplythebestpossibleboundpn=(1=2+o(1))n.QuantitativeinvertibilityproblemThepreviousproblemisonlyconcernedwithwhetherthehardedgesmin(A)iszeroornot.Thissaysnothingaboutthequantitativeinvertibilityproblemofthetypicalsizeofsmin(A).Thelatterquestionhasalonghistory.VonNeumannandhisassociatesusedrandommatricesastestinputsinalgorithmsfornumericalsolutionofsystemsoflinearequations.Theaccuracyofthematrixalgorithms,andsometimestheirrunningtimeaswell,dependsontheconditionnumber(A)=smax(A)=smin(A).Basedonheuristicandexperimentalevidence,vonNeumannandGoldstinepredictedthatsmin(A)n�1=2;smax(A)n1=2withhighprobability(3.1) 10M.Rudelson,R.VershyninThisresultaddressesbothqualitativeandquantitativeaspectsoftheinvert-ibilityproblem.Setting"=0weseethatAisinvertiblewithprobabilityatleast1�cn.ThisgeneraizestheresultofKahn,KomlosandSzemeredi[43]fromBernoullitoallsubgaussianmatrices.Ontheotherhand,quantitatively,The-orem3.2statesthatsmin(A)&n�1=2withhighprobabilityforgeneralrandommatrices.Acorrespondingnon-asymptoticupperboundsmin(A).n�1=2alsoholds[66],sowehavesmin(A)n�1=2asinvonNeumann-Goldstine'sprediction.Boththesebounds,upperandlower,holdwithhighprobabilityundertheweakerfourthmomentassumptionontheentries[65,66].Thistheorywasextendedtorectangularrandommatricesofarbitrarydimen-sionsNnin[67].AsweknowfromSection2,oneexpectsthatsmin(A)p N�p n.Butthiswouldbeincorrectforsquarematrices.Toreconcilerectan-gularandsquarematriceswemakethefollowingcorrectionofourprediction:smin(A)p N�p n�1withhighprobability:(3.3)Forsquarematricesonewouldhavethecorrectestimatesmin(A)p n�p n�1n�1=2.ThefollowingresultextendsTheorem3.2torectangularmatrices:Theorem3.3(Smallestsingularvalueofrectangularrandommatrices[65]).LetAbeannnrandommatrixwhoseentriesareindependentandidenticallydistributedsubgaussianrandomvariableswithzeromeanandunitvariance.ThenP�smin(A)"(p N�p n�1)(C")N�n+1+cN;"0whereC�0andc2(0;1)dependonlyonthesubgaussianmomentoftheentries.Thisresulthasbeenknownforalongtimefortallmatrices,whosetheaspectratio=n=Nisboundedbyasucientlysmallconstant,see[10].Theoptimalboundsmin(A)cp Ncanbeprovedinthiscaseusingan"-netargumentsimilartoProposition2.4.Thiswasextendedin[53]tosmin(A)cp Nforallaspectratios1�c=logn.Thedependenceofcontheaspectratiowasimprovedin[2]forBernoullimatricesandin[62]forgeneralsubgaussianmatrices.Feldheim-Sodin'sTheorem2.3givespreciseTracy-Widom uctuationsofsmin(A)fortallmatrices,butbecomesuselessforalmostsquarematrices(sayforNn+n1=3).Theorem3.3isananoptimalresult(uptoabsoluteconstants)whichcoversmatri-ceswithallaspectratiosfromtalltosquare.Non-asymptoticestimate(3.3)wasextendedtomatriceswhoseentrieshave nite(4+")-thmomentin[93].UniversalityofthesmallestsingularvaluesThelimitingdistributionofsmin(A)turnsouttobeuniversalasdimensionn!1.WealreadysawasimilaruniversalityphenomenoninTheorem2.3forgenuinelyrectangularmatrices.Forsquarematrices,thecorrespondingresultwasprovedbyTaoandVu[87]:Theorem3.4(Smallestsingularvalueofsquarematrices:universality[87]).LetAbeannnrandommatrixwhoseentriesareindependentandidenticallydistributedrandomvariableswithzeromean,unitvariance,and niteK-thmomentwhereK 12M.Rudelson,R.VershyninAnobviousadvantageofspreadvectorsisthatweknowthemagnitudeofalltheircoecients.Thismotivatesthefollowinggeometricinvertibilityargument.IfAperformsextremelypoorsothatsmin(A)=0,thenoneofthecolumnsXkofAliesinthespanHk=span(Xi)i6=koftheothers.Thissimpleobservationcanbetransformedintoaquantitativeargument.Supposex=(x1;:::;xn)2Rnisaspreadvector.Then,foreveryk=1;:::;n,wehavekAxk2dist(Ax;Hk)=distnXi=1xiXi;Hk=dist(xkXk;Hk)=jxkjdist(Xk;Hk)c1n�1=2dist(Xk;Hk):(3.5)Sincetherighthandsidedoesnotdependonx,wehaveprovedthatminx2SpreadkAxk2c1n�1=2dist(Xn;Hn):(3.6)Thisreducesourtasktothegeometricproblemofindependentinterest{es-timatethedistancebetweenarandomvectorandanindependentrandomhyper-plane.Theexpectationestimate1Edist(Xn;Hn)2=O(1)followseasilybyindependenceandmomentassumptions.Butweneedalowerboundwithhighprobability,whichisfarfromtrivial.ThiswillmakeaseparatestoryconnectedtotheLittlewood-O ordtheoryofsmallballprobabilities,whichwediscussinSection4.InparticularwewillproveinCorollary4.4theoptimalestimateP(dist(Xn;Hn)")C"+cn;"0;(3.7)whichissimplefortheGaussiandistribution(byrotationinvariance)anddiculttoprovee.g.fortheBernoullidistribution.Togetherwith(3.6)thismeansthatweprovedinvertibilityonallspreadvectors:P�minx2SpreadkAxk2"n�1=2C"+cn;"0:ThisisexactlythetypeofprobabilityboundclaimedinTheorem3.2.Aswesaid,wecan nishtheproofbycombiningwiththe(muchbetter)invertibilityonsparsevectorsin(3.4),andbyanapproximationargument.4.Littlewood-O ordtheorySmallballprobabilitiesandadditivestructureWeencounteredthefol-lowinggeometricproblemintheprevioussection:estimatethedistancebetweenarandomvectorXwithindependentcoordinatesandanindependentrandomhyper-planeHinRn.Weneedalowerboundonthisdistancewithhighprobability.LetusconditiononthehyperplaneHandleta2Rndenoteitsunitnormalvector.Writingincoordinatesa=(a1;:::;an)andX=(1;:::;n),weseethatdist(X;H)=ha;Xi= nXi=1aii :(4.1) 14M.Rudelson,R.VershyninAdditivestructureofthecoecientvectoraisrelatedtotheshortestarithmeticprogressionintowhichitembeds.Thislengthisconvenientlyexpressedastheleastcommondenominatorlcd(a)de nedasthesmallest�0suchthata2Znn0.ExamplessuggestthatLevyconcentrationfunctionshouldbeinverselyproportionaltotheleastcommondenominator:lcd(a0)=n1=21=L(S;0)in(4.2)andlcd(a00)=n3=21=L(S;0)in(4.3).Thisisnotacoincidence.Buttostateageneralresult,wewillneedtoconsideramorestableversionoftheleastcommondenominator.Givenanaccuracylevel �0,wede netheessentialleastcommondenominatorlcd (a):=inf�0:dist(a;Zn)min(1 10kak2; ) :Therequirementdist(a;Zn)1 10kak2ensuresapproximationofabynon-trivialintegerpoints,thoseinanon-trivialconeinthedirectionofa.Theconstant1 10isarbitraryanditcanbereplacedbyanyotherconstantin(0;1).Onetypicallyusesthisconceptforaccuracylevels =cp nwithasmallconstantcsuchasc=1 10.Theinequalitydist(a;Zn) yieldsthatmostofthecoordinatesofaarewithinasmallconstantdistancefromintegers.Forsuch ,inexamples(4.2)and(4.3)onehasasbeforelcd (a0)n1=2andlcd (a00)n3=2.HerewestateandsketchaproofofageneralLittlewood-O ordtyperesultfrom[67].Theorem4.2(Levyconcentrationfunctionviaadditivestructure).Let1;:::;nbeindependentidenticallydistributedmeanzerorandomvariables,whicharewellspread:p:=L(k;1)1.Then,foreverycoecientvectora=(a1;:::;an)2Sn�1andeveryaccuracylevel &#x]TJ/;ø 9;&#x.962; Tf;&#x 11.;ڙ ;� Td;&#x [00;0,thesumS=Pni=1aiisatis esL(S;")C"+C=lcd (a)+Ce�c 2;"0;(4.4)whereC;c&#x]TJ/;ø 9;&#x.962; Tf;&#x 11.;ڙ ;� Td;&#x [00;0dependonlyonthespreadp.Proof.AclassicalEsseen'sconcentrationinequality[24]boundstheLevyconcen-trationfunctionofanarbitraryrandomvariableZbytheL1normofitscharac-teristicfunctionZ()=Eexp(iZ)asfollows:L(Z;1)CZ1�1jZ()jd:(4.5)OnecanprovethisinequalityusingFourierinversionformula,see[80,Section7.3].WewillshowhowtoproveTheorem4.2forBernoullirandomvariablesi;thegeneralcaserequiresanadditionalargument.Withoutlossofgeneralitywecanassumethatlcd (a)1 ".Applying(4.5)forZ=S=",weobtainbyindependencethatL(S;")CZ1�1jS(=")jd=CZ1�1nYj=1jj(=")jd;wherej(t)=Eexp(iajjt)=cos(ajt).Theinequalityjxjexp(�1 2(1�x2))whichisvalidforallx2Rimpliesthatjj(t)jexp�1 2sin2(ajt)exp�1 2dist(ajt ;Z)2: 16M.Rudelson,R.VershyninProof.Aswasnoticedin(4.1),wecanwritedist(Xn;Hn)asasumofindependentrandomvariables,andthenbounditusing(4.7). Corollary4.4o ersusexactlythemissingpiece(3.7)inourproofoftheinvert-ibilityTheorem3.2.Thiscompletesouranalysisofinvertibilityofsquarematrices.Remark.Thesemethodsgeneralizetorectangularmatrices[67,93].Forexample,Corollary4.4canbeextendedtocomputethedistancebetweenrandomvectorsandsubspacesofarbitrarydimension[67]:forHn=span(X1;:::;Xn�d)wehave(Edist(Xn;Hn)2)1=2=p dandP�dist(Xn;Hn)"p d(C")d+cn;"0:5.ApplicationsTheapplicationsofnon-asymptotictheoryofrandommatricesarenumerous,andwecannotcoveralloftheminthisnote.Insteadweconcentrateonthreedi erentresultspertainingtotheclassicalrandommatrixtheory(CircularLaw),signalprocessing(compressedsensing),andgeometricfunctionalanalysisandtheoreticalcomputerscience(shortKhinchin'sinequalityandKashin'ssubspaces).CircularlawAsymptotictheoryofrandommatricesprovidesanimportantsourceofheuristicsfornon-asymptoticresults.Wehaveseenanillustrationofthisintheanalysisoftheextremesingularvalues.Thisinteractionbetweentheasymptoticandnon-asymptotictheoriesgoestheotherwayaswell,asgoodnon-asymptoticboundsaresometimescrucialinprovingthelimitlaws.Oneremarkableexampleofthisisthecircularlawwhichwewilldiscussnow.ConsiderafamilyofnnmatricesAwhoseentriesareindependentcopiesofarandomvariableXwithmeanzeroandunitvariance.LetnbetheempiricalmeasureoftheeigenvaluesofthematrixBn=1 p nAn,i.e.theBorelprobabilitymeasureonCsuchthatn(E)isthefractionoftheeigenvaluesofBncontainedinE.Along-standingconjectureinrandommatrixtheory,whichiscalledthecircularlaw,suggestedthatthemeasuresnconvergetothenormalizedLebesguemeasureontheunitdisc.TheconvergenceherecanbeunderstoodinthesamesenseasintheWigner'ssemicirclelaw.ThecircularlawwasoriginallyprovedbyMehta[56]forrandommatriceswithstandardnormalentries.Theargumentusedtheexplicitformulaforjointdensityoftheeigenvalues,soitcouldnotbeextendedtootherclassesofrandommatrices.WhiletheformulationofWigner'ssemicirclelawandthecircularlawlooksimilar,themethodsusedtoprovetheformerarenotapplicabletothelatter.Thereasonisthatthespectrumofageneralmatrix,unlikethatofaHermitianmatrix,isunstable:asmallchangeoftheentriesmaycauseasigni cantchangeofthespectrum(see[6]).Girko[30]introducedanewapproachtothecircularlawbasedonconsideringtherealpartoftheStieltjestransformofmeasuresn.Forz=x+iytherealStieltjestransformisde nedby 18M.Rudelson,R.Vershyninwherekxk0=jsupp(x)j.Thisoptimizationproblemishighlynon-convexandcomputationallyintractable.Sooneconsidersthefollowingconvexrelaxationof(5.1),whichcanbeecientlysolvedbyconvexprogrammingmethods:minimizekxk1subjecttoAx=Ax;(5.2)wherekxk1=Pni=1jxijdenotesthe`1norm.Onewouldthenneedto ndconditionswhenproblems(5.1)and(5.2)areequivalent.CandesandTao[16]showedthatthisoccurswhenthemeasurementmatrixAisarestrictedisometry.Foranintegersn,therestrictedisometryconstants(A)isthesmallestnumber0whichsatis es(1�)kxk22kAxk22(1+)kxk22forallx2Rn;jsupp(x)js:(5.3)Geometrically,therestrictedisometrypropertyguaranteesthatthegeometryofs-sparsevectorsxiswellpreservedbythemeasurementmatrixA.InturnsoutthatinthissituationonecanreconstructxfromAxbytheconvexprogram(5.2):Theorem5.1(Sparsereconstructionusingconvexprogramming[16]).Assume2sc.Thenthesolutionof(5.2)equalsxwheneverjsupp(x)js.Aproofwithc=p 2�1isgivenin[15];thecurrentrecordisc=0:472[13].RestrictedisometrypropertycanbeinterpretedintermsoftheextremesingularvaluesofsubmatricesofA.Indeed,(5.3)equivalentlystatesthattheinequalityp 1�smin(AI)smax(AI)p 1+holdsforallmssubmatricesAI,thoseformedbythecolumnsofAindexedbysetsIofsizes.InlightofSections2and3,itisnotsurprisingthatthebestknownrestrictedisometrymatricesarerandommatrices.ItisactuallyanopenproblemtoconstructdeterministicrestrictedisometrymatricesasinTheorem5.2below.Thefollowingthreetypesofrandommatricesareextensivelyusedasmeasure-mentmatricesincompressedsensing:Gaussian,Bernoulli,andFourier.Herewesummarizetheirrestrictedisometryproperties,whichhavethecommonremark-ablefeature:therequirednumberofmeasurementsmisroughlyproportionaltothesparsitylevelsratherthanthe(possiblymuchlarger)dimensionn.Theorem5.2(Randommatricesarerestrictedisometries).Letm;n;sbepositiveintegers,";2(0;1),andletAbeanmnmeasurementmatrix.1.SupposetheentriesofAareindependentandidenticallydistributedsub-gaussianrandomvariableswithzeromeanandunitvariance.AssumethatmCslog(2n=s)whereCdependsonlyon",,andthesubgaussianmoment.Thenwithprobabilityatleast1�",thematrixA=1 p mAisarestrictedisometrywiths(A).2.LetAbearandomFouriermatrixobtainedfromthenndiscreteFouriertransformmatrixbychoosingmrowsindependentlyanduniformly.AssumethatmCslog4(2n):(5.4) 20M.Rudelson,R.Vershyninthisargumentfor ()runsintotothesameproblemsasforthesmallestsingularvalue.Forany xed�0thesolutionwas rstobtained rstbyJohnsonandSchechtman[38]whoshowedthatthereexistsVsatisfying(5.5)with ()=c1=.In[54]thiswasestablishedforarandomsetV(orarandommatrixA)withthesameboundon ().Furthermore,theresultremainsvalidevenwhendependsonn,aslongasc=logn.Theproofusesthesmallestsingularvalueboundfrom[53]inacrucialway.Theboundon ()hasbeenfurtherimprovedin[2],alsousingthesingularvalueapproach.Finally,atheoremin[62]assertsthatforarandomsetVtheinequalities(5.5)holdwithhighprobabilityfor ()=c2; ()=C:Moreover,theresultholdsforall�0andn,withoutanyrestrictions.Theproofcombinesthemethodsof[63]andageometricargumentbasedonthestructureofasectionofthe`n1ball.Theprobabilityestimateof[62]canbefurtherimprovedifonereplacesthesmallballprobabilityboundof[63]withthatof[65].TheshortKhinchininequalityshowsalsothatthe`1and`2normsareequiv-alentonarandomsubspaceE:=ARnRN.Indeed,ifAisanNnran-dommatrix,thenwithhighprobabilityeveryvectorx2Rnsatis es ()kxk2N�1kAxk1N�1=2kAxk2Ckxk2.ThesecondinequalityhereisCauchy-Schwartz,andthethirdoneisthelargestsingularvaluebound.ThiereforeC�1 ()kyk2N�1=2kyk1kyk2forally2E:(5.6)SubspacesEpossessingproperty(5.6)arecalledKashin'ssubspaces.TheclassicalDvoretzkytheoremstatesthatahigh-dimensionalBanachspacehasasubspacewhichisclosetoEuclidean[59].Thedimensionofsuchsubspacedependsonthegeometryoftheambientspace.Milmanprovedthatsuchsubspacesalwaysexistindimensionclogn,wherenisthedimensionoftheambientspace[58](seealso[59]).Forthespace`n1thesituationismuchbetter,andsuchsubspacesexistindimension(1�)nforanyconstant�0.Thiswas rstprovedbyKashin[41]alsousingarandommatrixargument.Obviously,as!0,thedistancebetweenthe`1and`2normsonsuchsubspacegrowsto1.TheoptimalboundforthisdistancehasbeenfoundbyGarnaevandGluskin[28]whousedsubspacesgeneratedbyGaussianrandommatrices.Kashin'ssubspacesturnedouttobeusefulintheoreticalcomputerscience,inparticularinthenearestneighborsearch[36]andincompressedsensing.AtpresentnodeterministicconstructionisknownofsuchsubspacesofdimensionnproportionaltoN.Theresultof[62]showsthatab(1+)ncnrandomBernoullimatrixde nesaKashin'ssubspacewith ()=c2.ArandomBernoullimatrixiscomputationallyeasiertoimplementthanarandomGaussianmatrix,whilethedistancebetweenthenormsisnotmuchworsethanintheoptimalcase.Atthesametime,sincethesubspacesgeneratedbyaBernoullimatrixarespannedbyrandomverticesofthediscretecube,theyhaverelativelysimplestructure,whichispossibletoanalyze. 22M.Rudelson,R.Vershynin[21]P.Erdos,OnalemmaofLittlewoodandO ord,Bull.Amer.Math.Soc.51(1945),898{902[22]P.Erdos,Extremalproblemsinnumbertheory,1965Proc.Sympos.PureMath.,Vol.VIII,pp.181{189AMS,Providence,R.I.[23]C.G.Esseen,Fourieranalysisofdistributionfunctions.AmathematicalstudyofthelaplaceGaussianlaw,ActaMath.77(1945),1{125.[24]C.G.Esseen,OntheKolmogorov-Rogozininequalityfortheconcentrationfunction,Z.WahrscheinlichkeitstheorieundVerw.Gebiete5(1966),210{216.[25]O.Feldheim,S.Sodin,Auniversalityresultforthesmallesteigenvaluesofcertainsamplecovariancematrices,GeometricandFunctionalAnalysis,toappear[26]P.Frankl,Z.Furedi,SolutionoftheLittlewood-O ordprobleminhighdimensions,Ann.ofMath.(2)128(1988),259{270.[27]O.Friedland,S.Sodin,BoundsontheconcentrationfunctionintermsoftheDio-phantineapproximation,C.R.Math.Acad.Sci.Paris345(2007),513{518.[28]A.Garnaev,E.Gluskin,ThewidthsofaEuclideanball,SovietMath.Dokl.30(1984),200{204.[29]S.Geman,Alimittheoremforthenormofrandommatrices,Ann.Probab.8(1980),252{261.[30]V.L.Girko,Thecircularlaw,TheoryProbab.Appl.29(1984),no.4,694{706.[31]Y.Gordon,OnDvoretzky'stheoremandextensionsofSlepian'slemma,Israelsem-inarongeometricalaspectsoffunctionalanalysis(1983/84),II,TelAvivUniv.,TelAviv,1984.[32]Y.Gordon,SomeinequalitiesforGaussianprocessesandapplications,IsraelJ.Math.50(1985),265{289.[33]Y.Gordon,MajorizationofGaussianprocessesandgeometricapplications,Probab.TheoryRelatedFields91(1992),251{267.[34]F.Gotze,A.Tikhomirov,OntheCircularLaw,arXiv:math/0702386.[35]F.Gotze,A.Tikhomirov,TheCircularLawforRandomMatrices,arXiv:0709.3995,toappearinAnn.Prob.[36]P.Indyk,Dimensionalityreductiontechniquesforproximityproblems,ProceedingsoftheNinthACM-SIAMSymposiumonDiscreteAlgorithms,2000.[37]K.Johansson,Shape uctuationsandrandommatrices,Comm.Math.Phys.209(2000),437{476.[38]W.B.Johnson,G.Schechtman,VerytightembeddingsofsubspacesofLp,1p2,intolnp,Geom.Funct.Anal.13(2003),no.4,845{851.[39]I.M.Johnstone,Onthedistributionofthelargesteigenvalueinprincipalcomponentsanalysis,Ann.Statist.29(2001),295{327.[40]G.Halasz,Estimatesfortheconcentrationfunctionofcombinatorialnumbertheoryandprobability,PeriodicaMathematicaHungarica8(1977),197{211[41]B.Kashin,Sectionofsome nite-dimensionalsetsandclassesofsmoothfunctions(inRussian)Izv.Acad.Nauk.SSSR41(1977)334{351.[42]A.Kolmogorov,SurlesproprietesdesfonctionsdeconcentrationsdeM.P.Levy,Ann.Inst.H.Poincare16(1958),27{34. 24M.Rudelson,R.Vershynin[63]M.Rudelson,Invertibilityofrandommatrices:normoftheinverse,AnnalsofMath-ematics168(2008),575{600.[64]M.Rudelson,R.Vershynin,OnsparsereconstructionfromFourierandGaussianmeasurements,CommunicationsonPureandAppliedMathematics61(2008),1025{1045.[65]M.Rudelson,R.Vershynin,TheLittlewood-O ordproblemandinvertibilityofran-dommatrices,Adv.Math.218(2008),600{633.[66]M.Rudelson,R.Vershynin,TheleastsingularvalueofarandomsquarematrixisO(n�1=2),Comptesrendusdel'Academiedessciences-Mathematique346(2008),893{896.[67]M.Rudelson,R.Vershynin,Smallestsingularvalueofarandomrectangularmatrix,Comm.PureAppl.Math.62(2009),1707{1739.[68]A.Sankar,D.A.Spielman,S.-H.Teng,Smoothedanalysisoftheconditionnumbersandgrowthfactorsofmatrices,SIAMJ.MatrixAnal.Appl.28(2006),446{476.[69]A.Sarkozy,E.Szemeredi,UbereinProblemvonErdosundMoser,ActaArithmetica11(1965),205{208[70]G.Schechtman,RandomembeddingsofEuclideanspacesinsequencespaces,IsraelJournalofMathematics40,No.2,1981,187?192.[71]J.Silverstein,Thesmallesteigenvalueofalarge-dimensionalWishartmatrix,Ann.Probab.13(1985),1364{1368.[72]D.Slepian,Theone-sidedbarrierproblemforGaussiannoise,BellSystemTech.J.41(1962),463{501.[73]S.Smale,Ontheeciencyofalgorithmsofanalysis,Bull.Amer.Math.Soc.(N.S.)13(1985),87{121[74]A.Soshnikov,Anoteonuniversalityofthedistributionofthelargesteigenvaluesincertainsamplecovariancematrices,J.Statist.Phys.108(2002),1033{1056.[75]D.Spielman,S.-H.Teng,Smoothedanalysisofalgorithms.ProceedingsoftheIn-ternationalCongressofMathematicians,Vol.I(Beijing,2002),597{606,HigherEd.Press,Beijing,2002[76]M.Talagrand,Concentrationofmeasureandisoperimetricinequalitiesinproductspaces,Inst.HautesEtudesSci.Publ.Math.No.81(1995),73{205.[77]M.Talagrand,Anewlookatindependence,Ann.Probab.24(1996),1{34.[78]T.Tao,V.Vu,Onrandom1matrices:singularityanddeterminant,RandomStructuresandAlgorithms28(2006),1{23.[79]S.Szarek,Conditionnumbersofrandommatrices,J.Complexity7(1991),131{149.[80]T.Tao,V.Vu,Additivecombinatorics.CambridgeStudiesinAdvancedMathemat-ics,105.CambridgeUniversityPress,Cambridge,2006.[81]T.Tao,V.Vu,OnthesingularityprobabilityofrandomBernoullimatrices,J.Amer.Math.Soc.20(2007),603?628.[82]T.Tao,V.Vu,Randommatrices:thecircularlaw,Commun.Contemp.Math.10(2008),no.2,261{307.[83]T.Tao,V.Vu,InverseLittlewood-O ordtheoremsandtheconditionnumberofrandomdiscretematrices,AnnalsofMath.169(2009),595-632.