/
September   Cauchys theorem Cauchys formula corollarie September   Cauchys theorem Cauchys formula corollarie

September Cauchys theorem Cauchys formula corollarie - PDF document

phoebe-click
phoebe-click . @phoebe-click
Follow
402 views
Uploaded On 2015-05-21

September Cauchys theorem Cauchys formula corollarie - PPT Presentation

umnedu http wwwmathumnedu garrett This document is httpwwwmathumnedugarrettmcomplex04 Cauchypdf 1 Path integrals 2 Cauchys theorem 3 Cauchys formula 4 Power series expansions Moreras theorem 5 Identity principle 6 Liouvilles theorem bounded entire fu ID: 71679

umnedu http wwwmathumnedu garrett This

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "September Cauchys theorem Cauchys form..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

PaulGarrett:Cauchy'stheorem,Cauchy'sformula,corollaries(September17,2014) iscontinuousthroughout[a;b],and[a;b]breaksinto nitely-manysubintervalsoneachofwhich iscontinuouslydi erentiable.[1.2.1]Proposition:Forcontinuous,complex-valuedfon andniceparametrizedpath :[a;b]! ,thepathintegralR foffalong expressedasalimitofRiemannsums,isexpressibleintermsoftheparametrization,asZ f=Zbaf( (t)) 0(t)dt(where 0(t)=d dt (t)asexpected)Proof:ThepointisthatRiemannsumsdirectlyonthecurveareequaltoRiemannsumson[a;b],viatheparametrization.Thefactor 0(t)isthelimitingcaseofthemultiplicationbydi erenceswj�wj�1inthedirectRiemannsumversion.Consider (t)=x(t)+iy(t)withonce-continuously-di erentiablereal-valuedfunctionsx(t);y(t).Given�0,choosea=t1t2:::tn=bon[a;b]suchthatj (tj)� (tj�1)j,usingtheuniformcontinuityof ontheboundedinterval[a;b].Themeanvaluetheoremappliedtofunctionsx(t);y(t)showsthat (tj+1)� (tj)iswellapproximatedby 0(tj)(tj+1�tj): (tj)� (tj�1) tj+1�tj� 0(tj)!0(astj+1�tj!0)Againbecause[a;b]isbounded,thislimitbehaviorisuniform:given"�0,thereis�0suchthat (t)� () t�� 0() "(fort6=in[a;b]withjt�j)Thus,thedirectRiemannsumiswellapproximatedbyamodi edform: Xjf( (tj))( (tj+1)� (tj))�Xjf( (tj)) 0(tj)(tj+1�tj) "Xj f( (tj)) (tj+1�tj)Themodi edRiemannsumPjf( (tj)) 0(tj)(tj+1�tj)isexactlyaRiemannsumfortheparametrized-pathintegral.Theright-handsideintheinequalityis"timesaRiemannsumforthereal-valuedfunctiont!jf( (t))j,andtheseRiemannsumsconvergetoa nitenumber.Since"isassmallasdesired,thelefthandsidegoesto0.Thus,Riemannsumsfortheparametrized-pathintegralconvergetothesamelimitastheRiemannsumsforthedirectly-de nedpathintegral.===[1.2.2]Remark:Thepreviousdiscussionalsoshowsthatthepathintegraldoesnotdependontheparametrization.Independenceofpathparametrizationcanalsobeprovendirectlybychangingvariables,fromthechainrule:Let 2:[a2;b2]! and':[a2;b2]![a;b]di erentiablesuchthat '= 2.Unwindingthede nitions,andusingthechainrule,withu='(t),Z 2f=Zb2a2f( 2(t)) 02(t)dt=Zb2a2f( '(t))( ')0(t)dt=Zb2a2f( '(t)) 0('(t))d'(t)=Zbaf( (u)) 0(u)du=Z fprovingindependenceofparametrization.2 PaulGarrett:Cauchy'stheorem,Cauchy'sformula,corollaries(September17,2014)Byuniformcontinuityoffonanopensetwithcompactclosurecontainingthepath,given"�0,forsmallenough,jf(z)�f(wj�1)j"forallzonthestraightlinesegment`jfromwj�1towj,so Z`jf�f(wj�1)Z`j1 "jwj�wj�1jand Z f�XjZ`jf "Xjjwj�wj�1jObviously,thestraightlinesegments`jassembletoapolygonapproximating .Thesituationsuggeststhatthelimitas!0+ofPjjwj�wj�1jisthelengthof .Thiswillfollowfromthe nitely-piecewisecontinuousdi erentiabilityof .Itsucestoconsideroneofthe nitely-manycontinuouslydi erentiablepiecesof ,thus,wetake :[a;b]! continuouslydi erentiablewithoutlossofgenerality.Weclaimthatlim!0Xjjwj�wj�1j=Zbaj 0(t)jdtWith (tj)=wj,bytheuniformcontinuityofthederivative,wj�wj�1 tj�tj�1� 0(tj�1)�!0(uniformly,as!0)Thus,forgiven"�0,forsmallenough�0, Xjjwj�wj�1j�Xjj 0(tj�1)j(tj�tj�1) "Xjjtj�tj�1j="jb�aj�!0TheRiemannsuminvolving 0goestoRbaj 0(t)jdt.===[1.6.1]Remark:Moregenerally,curves forwhichthelimitofthesumPjjwj�wj�1jexistsarerecti able.Theredoexistcontinuousbutnot-recti ablecurves.Weneedat-worst nitely-piecewisecontinuouslydi erentiablecurves,soworryaboutfurtherpossibilitiesisnotnecessary.[1.7]ThetrivialestimateonpathintegralsThisgivesasimple,usefulupperboundforR f:[1.7.1]Claim: Z f supz2 jfjlength( )Proof:Thisarisesfromthecorrespondingassertionforreal-variablescalculus:with :[a;b]!C,approximatingacomplexintegral'sabsolutevaluebytheintegraloftheabsolutevalue, Z f = Zbaf( (t)) 0(t)dt Zbajf( (t))jj 0(t)jdtsupz2 jfjZbaj 0(t)jdt=supz2 jfjlength( )asclaimed.===4 PaulGarrett:Cauchy'stheorem,Cauchy'sformula,corollaries(September17,2014)Proof:Picksomepointzoin ,andformtrianglesfromzoandeverypairofconsecutiveverticesofP.Thesetriangleslieinside sinceitisconvex.Thesumofthe(counter-clockwise)integralsoverthesetrianglesistheintegralover�,sincetheadded-onpathsaretracedinbothdirections,socancel.Theintegralovereachtriangleis0,byCauchy'stheorem.===[2.0.3]Corollary:Fora nitely-piecewisecontinuouslydi erentiableclosedcurve inaconvexset and thepathintegralaroundPtracedcounter-clockwise,forfcomplex-di erentiableon ,R f=0.Proof:Approximate bypolygonsinside .===[2.0.4]Remark:Unsurprisingly,thesameargumentworksunderaweakerhypothesisthanconvexity:for and starlikeaboutz,meaningthatthelinesegmentconnectingztoanyotherpointof liesentirelyinside ,andthelinesegmentconnectingztoanypointof meets onlyatthatpoint.[2.0.5]Remark:Ever-morecomplicated,weakerhypothesesonthetopologyof and stillallowtheconclusionR f=0.Asimpleusefulcaseisthat iscontractiblein ,meaningthatitcanbe(piece-wisesmoothly!)shrunkdowntoapointwithoutpassingoutside . 3.Cauchy'sformula/integralrepresentationAgain,thebasecaseinvolvestheverysimplestpaths,forexample,triangles:[3.0.1]Theorem:Forfcomplexdi erentiablenearz,for acounter-clockwisepatharoundatrianglehavingzinitsinterior,f(z)=1 2iZ f(w) w�zdwProof:ThefunctionF(z)=f(z)�f(zo) z�zoiscomplex-di erentiablewherefis,exceptpossiblyzo.Let 0bethepathcounterclockwisearoundasmalltriangleT0aboutzo,entirelyinsidethelargertriangleT.ConnecttheverticesofT0tothoseofT.Asinearlierepisodes,thesumofpathintegralsovertheboundariesofthethreeresultingquadrilateralsandtheboundary 0ofT0istheintegralover ,becausetheinteriorpathsaretraversedinbothdirections,socancel.Cauchy'stheoremfornicepolygonsaboveshowsthattheintegralovereachquadrilateralis0.Thus,Z F=Z 0FUsingcontinuityofFatzo,given"�0thereis�0suchthatjF(z)�F(zo)j"forjz�zoj.WithT0chosensmallenoughtobeinsidethediskofradiusatzo, Z 0F(z)�F(zo)dz "length 0"6Again,theintegraloftheconstantF(zo)aroundaclosedpathis0.Thus,theintegralofFitselfissmallerthanevery"&#x-556;0,andisnecessarily0.Thus,relabellingthevariablestobetterexpressourintent,0=1 2iZ f(w)�f(z) w�zdw=1 2iZ f(w) w�zdw�f(z)1 2iZ 1 w�zdw6 PaulGarrett:Cauchy'stheorem,Cauchy'sformula,corollaries(September17,2014)Ash!0,forzuniformlyboundedawayfromw,thisgoesto0uniformlyinz;w.Sincefiscontinuous,itisuniformlyboundedonthecompactsetconsistingofthecurve .Thus,thede nitionofthederivativebeinggivenbytheexpectedformulaisveri ed.===Weakeningaconvexityhypothesis:forthefollowingcorollary,aregion isstarlikeaboutzwhenthelinesegmentconnectingztoanyotherpointin liesentirelyinside .Apath insidestarlike isstarlikeaboutzwhenthelinesegmentconnectingztoanypointwon meets onlyatw.[3.0.3]Corollary:For astarlikepolygonalpathaboutz,tracedcounter-clockwise,andfcomplex-di erentiableonastarlike containing ,Z f(w)dw w�z=2if(z)Proof:PutasmalltriangleTaroundz,smallenoughsothat,bycontinuity,reasonablechoicesoflinesegmentsconnectingtheverticestotheverticesofthepolygonlieinside .ThesumoftheintegralsovertheresultingtrianglesotherthanTare0,byCauchy'stheorem,andtheintegralaroundTgives2if(z),asjustproven.===[3.0.4]Corollary:For astarlike nitely-piecewisecontinuouslydi erentiablepathaboutz,tracedcounter-clockwise,andfcomplex-di erentiableonastarlike containing ,Z f(w)dw w�z=2if(z)Proof:Approximate byconvexpolygonalpaths.===[3.0.5]Remark:Thesameargumentsshowinquitegeneralsituationsthat1 2iZ f(w)dw w�z=f(z)1 2iZ dw w�zThelatterintegralisproven,invariousways,tobeaninteger,andisthewindingnumberof aroundz,whichismeanttobethenumberoftimes goesaroundz.Thisisimpreciseasitstands,butcanbemadepreciseinvariousways,thebestonesinvolvingalittlealgebraictopology.Asimpleclosedcurve aboutzisonesuchthat1 2iZ dw w�z=1 4.Powerseriesexpansions,Morera'stheorem[4.0.1]Theorem:AfunctionadmittingaCauchyintegralrepresentationf(z)=1 2iZ f(w) w�zdwforsome xedsimpleclosedpath aboutztracedcounter-clockwise,hasaconvergentpowerseriesexpansionforzneareveryzoinside :f(z)=1Xn=0f(n)(zo) n!(z�zo)n8 PaulGarrett:Cauchy'stheorem,Cauchy'sformula,corollaries(September17,2014)Ifdesired,thisiseasilyrearrangedtogive"ratherthan3",provingcontinuityofthelimitfthroughout .Withcontinuityinhand,wecancertainlyintegratefoverboundariesoftrianglesandothersimpleclosedcurves inside .SinceR fj=0forallj,andsince(theimageof) iscompact,theintegralsRgamfjgotoR f,whichistherefore0.ByMorera'stheorem,fisholomorphic.=== 5.Identityprinciple[5.0.1]Theorem:Ifholomorphicfunctionsf;gonaconnectedopenset takethesamevaluesatdistinctpointsz1;z2;z3;:::in ,andlimjzj=zo2 ,thenf=gthroughout .Proof:First,onenaturallineofargumentcanbefollowedtoitslogicalend:bycontinuityoff;g,f(zo)=limjf(zj)=limjg(zj)=g(zo)Equalityofthe rstderivativeatzofollowssimilarly:f0(zo)=limjf(zo)�f(zj) zo�zj=g(zo)�g(zj) zo�zj=g0(zo)Perhapsitisfeasibletoexpresshigherderivativesatzoasmorecomplicatediterateddi erencequotients,butthisisbestdoneinasomewhatrepackagedform:considerh=f�g,aholomorphicfunctionwithh(zj)=0andzj!zo.Thatis,insideeverypunctureddisk0jz�zojthereisazeroofh.Ifhwerenotidentically0,itwouldhaveaconvergentpowerseriesh(z)=cN(z�zo)N+cN+1(z�zo)N+1+:::(withcN6=0)Theideaisthatforzveryclosetozothe(z�zo)Ndominatesthepowerseries,butisnot0forz6=zo,contradictingtheassumptionthathisnotidentically0.Indeed,forsomer&#x-296;0thepowerseriesisabsolutelyconvergentforjz�zojr,socertainlycnrn!0,sothesenumbersareboundedinabsolutevalue,saybyC.Forjzj�zoj=,with0rand1 2, XnN+1cn(zj�zo)n CXnN+1nCN+1 1�2CN+1Meanwhile,jcN(zj�zo)Nj=jcNjNTakingjlargeenoughsuchthatissmallenoughsothatjcNjN�2CN+1,wehavejh(zj)j= Xncn(zj�zo)n jcNjN�2CN+1�0contradictingh(zj)=0.Thus,h=f�gmusthavebeenidentically0.===[5.0.2]Example:Euler'sintegralfortheGammafunctionis�(s)=Z10tse�tdt t(forRe(s)�0)Forx�0,bychangingvariables,Z10tse�txdt t=x�sZ10tse�tdt t=x�s�(s)10 PaulGarrett:Cauchy'stheorem,Cauchy'sformula,corollaries(September17,2014) 7.LaurentexpansionsaroundisolatedsingularitiesThebasicCauchytheoryisdisk-oriented,sincepowerseriesconvergeindisks.Thenextsimplestregionfromthisviewpointisanannulusofinnerradiusr,outerradiusR,aboutapointzo: =fz2C:rjz�zojRg[7.1]Laurentexpansionsonanannulus[7.1.1]Theorem:Aholomorphicfunctionfintheannulus hasaLaurentexpansionf(z)=Xn2Zcn(z�zo)n=:::+c�2(z�zo)�2+c�1(z�zo)�1+c0+c1(z�zo)+c2(z�zo)2+:::absolutelyconvergentintheannulus,uniformlyoncompactsubsets.TheLaurentcoecientscnaregivenbycn=8&#x-278;&#x-278;&#x-278;&#x-278;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;&#x]TJ ;� -1;.93; Td;&#x [00;:1 2iZ Rf(w)dw (w�zo)n+1(forn0)1 2iZ rf(w)dw (w�zo)�n+1(forn0)where RanyacircleaboutzoofradiusslightlylessthanR,and risacircleaboutzoofradiusslightlymorethanr.Thesecoecientsareunique,forrjz�zojR.[7.1.2]Remark:Thepositive-indextermsgiveapowerseriesconvergentatleastinjz�zojR,andthenegative-indextermsgiveapowerseriesin(z�zo)�1convergentatleastinjz�zoj&#x-296;r.Proof:Let bethepaththat rsttraverses R,thento ralongaradialsegmenttowardzo,traverses rbackward,thenbackoutto Ralongthesameradialsegment.Thetwointegralsalongtheradialsegmentareinoppositedirections,socanceleachother,givingZ Rf�Z rf=Z fFurther,forzbetween Rand r,Cauchy'sintegralformulagivesf(z)=1 2iZ f(w)dw w�z=1 2iZ Rf(w)dw w�z�1 2iZ rf(w)dw w�zTheintegralover RcanberearrangedjustaswasdoneinthediscussionofCauchy'sformulaforderivativesandpowerseriesexpansionsonadisk,producingthenon-negative-indextermsintheLaurentexpansion:1 2iZ Rf(w)dw w�z=Xn01 2iZ Rf(w)dw (w�zo)n+1(z�zo)nHowever,herethoseintegralsarenotassertedtohaveanyrelationwithderivativesoff.Theintegralover rcanberearrangedinasimilarway,butnowusingjz�zoj�jw�zoj:�1 2iZ rf(w)dw w�z=�1 2iZ rf(w)dw (w�zo)�(z�zo)=1 z�zo1 2iZ rf(w)dw 1�w�zo z�zo=1 z�zo1 2iZ rf(w)1+z�zo w�zo+�z�zo w�zo2+:::dw=X�n01 2iZ rf(w)dw (w�zo)n+1(z�zo)n=Xn01 2iZ rf(w)dw (w�zo)�n+1(z�zo)�n12 PaulGarrett:Cauchy'stheorem,Cauchy'sformula,corollaries(September17,2014)Proof:Let�Nbethemost-negativeindexsothattheLaurentcoecientisnon-zero.Asz!zo,themonomial(z�zo)�NeventuallydominatestherestoftheLaurentexpansion,andinabsolutevaluegoesto+1.Ontheotherhand,ifjf(z)j!+1atzo,thenj1=f(z)j!0,sohasaremovablesingularity,andisoftheform1 f(z)=(z�zo)Nh(z)forhholomorphicandnon-vanishingatzo.Inverting,bythequotientrule1=h(z)iscomplex-di erentiableatzo,sohasaconvergentpowerseriesexpressionthere.Thenf(z)=(z�zo)�N1 h(z)givesaLaurentserieswith nitely-manynegative-indexcoecients.===[7.6]EssentialsingularitiesIsolatedsingularitieswhichareneitherremovablenorpolesarecalledessentialsingularities.Unlikepoles,atwhichthevaluesofafunctionbecomelarge,atanessentialsingularitythebehaviorismorechaotic:[7.6.1]Corollary:(Casorati-Weierstrass)Letzobeanessentialsingularityofotherwise-holomorphicf.Then,givenw12C,given"�0and�0,thereisz1satisfyingjz1�zojandjf(z1)�w1j".Proof:Theideaistoproveaconverse:ifthereissomevaluew1whichf(z)staysawayfromthroughoutsomepunctureddisk0jz�zoj,thenzoiseitherremovableorapole.Thus,considerg(z)=1 f(z)�w1Thehypothesisthatfstaysawayfromw1assuresthatthedenominatorisboundedawayfrom0,sog(z)isboundednearzo,sohasaremovablesingularitythere.Thus,f(z)=1 g(z)+w1.Ifg(zo)6=0,thenfhasaremovablesingularitythere.Ifg(zo)=0,sinceg(z)isnotidentically0,theng(z)=(z�zo)Nh(z)forsomehholomorphicandnon-vanishingatzo.Then1=h(z)isagainholomorphicatzo(bythequotientrule!),sohasaconvergentpowerseriesexpansionthere.Thenf(z)=w1+(z�zo)�N1 h(z)givestheLaurentexpansionoff,with nitely-manynegative-indexterms.=== 8.ResiduesandevaluationofintegralsTheproofofuniquenessofLaurentexpansionsusedtheeasybutprofoundfactthatZ (w�zo)Ndw=Z20(eit)Nieitdt=iN+1Z20e(N+1)itdt=8:0(forN6=�1)2i(forN=�1)for acirclegoingcounterclockwisearoundzo.Asinearlierdiscussions,thesameoutcomeholdsfor anyreasonableclosedcurvegoingoncearoundzocounterclockwise.Thiswasusedabovetoshowthat,forfholomorphicon0jz�zojRwithLaurentexpansionf(z)=:::+c�2(z�zo)�2+c�1(z�zo)�1+c0+c1(z�zo)+c2(z�zo)2+:::(on0jz�zojR)and asmallcirclearoundzotracedcounterclockwise,Z f=2ic�1Itistraditionaltonamethe�1thLaurentcoecient:c�1=Resz=zof=residueoffatzo14 PaulGarrett:Cauchy'stheorem,Cauchy'sformula,corollaries(September17,2014)with1=(z+i)holomorphicatz=i,thepropositionjustabovegivesResz=i1 1+z2=1 z+i z=i=1 2iThus,byresidues,Z Tdz 1+z2=2iResz=i1 1+z2=2i1 2i=ItmayseemstrangethatforT�1theintegralsover TdonotchangeasT!1,butthatisaclearconsequenceofthebehaviorofintegralsoverclosedpaths.Thenexttrickistoseethattheintegraloverthesemi-circlesTofradiusTgoto0asT!1.Theusualcrudeestimatesuces: ZTdz 1+z2 (lengthT)maxz2T1 j1+z2j=T1 T(T�1) T�1!0Thus,Z1�1dz 1+z2=limTZ Tdz 1+z2�ZTdz 1+z2=�0=asweprobablyalreadyknewforotherreasons.[8.0.4]Example:Letbereal,andconsider[1]Z1�1eixdx 1+x2(withreal)Asinthepreviousexample,where=0,wewouldliketocomputethisbyresidues,bylookingatintegralsfrom�TtoTandthenoverasemi-circle.Indeed,for0,theexponentialisdecreasinginsizeintheupperhalf-plane,sinceei(x+iy)=eixe�yThus,anearlyidenticalargumentgivesZ1�1eixdx 1+x2=2iResz=ieiz 1+z2=2ieiz z+i z=i=2ie�xi 2i=e�(for0)However,for0,theexponentialblowsupintheupperhalf-plane.Fortunately,theexponentialgetssmallerinthelowerhalf-plane.Thus,weuseasemi-circleinthelowerhalf-plane.Notethatthewholecontourisnowtracedclockwise,sotherewillbeasign:Z1�1eixdx 1+x2=�2iResz=�ieiz 1+z2=�2ieiz z�i z=�i=�2ie�xi �2i=e(for0)Accommodatingbothsigns,Z1�1eixdx 1+x2=e�jj[8.0.5]Remark:Itisinfeasibletosurveyalltheimportantexamplesofintegrationbyresiduesintheliteratureinthisbriefintroduction. [1]ThisintegralisessentiallyanormalizationoftheFouriertransformof1=(1+x2),sohassomesigni canceinthatcontext,forexample.16 PaulGarrett:Cauchy'stheorem,Cauchy'sformula,corollaries(September17,2014)[10.0.2]Remark:Forholomorphicf(z)withpowerseriesc0+c1(z�zo)+c2(z�zo)2+:::withc0=c1=:::=cN�1=0,themultiplicityofthezerozooffisN.Asimplezerohasmultiplicity1,adoublezerohasmultiplicity2,andsoon.Proof:Thefunctionf0(z)=f(z)isholomorphicawayfromthezerosoffinside ,so,asusual,wereducetosmallcirclesaroundthezerosoff,andaddupthesecontributions.Withf(z)=cN(z�zo)N+cN+1(z�zo)N+1+:::withcN6=0,f(z)=cN(z�zo)N1+:::Also,f0(z)=NcN(z�zo)N�1+(N+1)cN+1(z�zo)N+:::=NcN(z�zo)N�11+:::)Thus,f0(z) f(z)==NcN(z�zo)N�1(1+:::) cN(z�zo)N(1+:::)=N z�zo(1+:::)=N z�zo+holomorphicatzoThus,integratingcounterclockwisealonasmallcircle oaroundzo,Z of0(z)dz f(z)=Z oN z�zo+holomorphicatzodz=2iN+0Addingtheseupoverallthezeroszogivestheargumentprincipleformula.===[10.0.3]Remark:Animportantvariantoftheargumentprinciplecomesfromf0(z) f(z)=d dzlogf(z).TheideaisthattraversingasmallcirclearoundazerozooforderNoffcausesthevaluef(z)togoaroundzeroNtimes,increasingtheargumentoff(z)byN2inthecourseofreturningtotheoriginalpoint. 11.Re ectionprincipleThereiscertainlynogeneralpromisethataholomorphicfunctionde ned(forexample)onahalf-plane,canbeextendedtoaholomorphicfunctiononthewholeplane,butundersomestraightforwardhypotheseswecanextendacrossaline:[11.0.1]Theorem:Let beanopensubsetofthecomplexupperhalf-plane,suchthattheclosure meetsRinanon-empty(necessarilyclosed)interval[a;b]Rofpositivelength.Thenanyholomorphicfon extendingtoacontinuousfunctionon [(a;b),real-valuedon(a;b),extendstoaholomorphicfunctionefontheunionof ,(a;b),andtheimageof re ectedacrosstherealaxis,thatis,on [(a;b)[f z:z2 gTheextensionisde nedonthere ectedimagebyef( z)= f(z)(forz2 )Proof:Fromitsde nition,theextensionefisreadilyseentobeholomorphiconthere ectedimageof :limh!0ef(z+h)�ef(z) h=conjugateoflimh!0f( z+h)�f( z) h=conjugateoflimh!0f( z+h)�f( z) h= f0( z)18