/
Status of  Lhc  collimator material R&D Status of  Lhc  collimator material R&D

Status of Lhc collimator material R&D - PowerPoint Presentation

relylancome
relylancome . @relylancome
Follow
343 views
Uploaded On 2020-06-23

Status of Lhc collimator material R&D - PPT Presentation

Elena Quaranta Working Group on Advanced Collimator Materials July 21 st 2014 BE BEAM DEPARTMENT Outline Overview of present LHC collimator materials Post LS1 secondary collimator material RampD ID: 783958

diamond mbar collimator molybdenum mbar diamond molybdenum collimator graphite composite 1110 elena 2014 materials 20133 91213 material amp adcolmat

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "Status of Lhc collimator material R&am..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Status of Lhc collimator material R&D

Elena

Quaranta

Working Group on Advanced Collimator MaterialsJuly 21st 2014

BE

BEAM

DEPARTMENT

Slide2

Outline

Overview of present LHC collimator materials

Post LS1 secondary collimator: material R&D

Copper-Diamond compositeMolybdenum-Diamond composite

Molybdenum-Graphite composite

Review of the testsSummary

Slide3

Outline

Overview of present LHC collimator materials

Post LS1 secondary collimator: material R&D

Copper-Diamond composite

Molybdenum-Diamond composite

Molybdenum-Graphite compositeReview of the tests

Summary

Slide4

Materials for LHC collimatorsAdColMat

- 21/7/2014

Elena Quaranta4

CFC (AC-150-K)

R4550 graphite

Copper OFEInermet180

Molybdenum

Glidcop Al-15Silver-Diamond

Molybdenum-Copper-DiamondCopper-DiamondMolybdenum-GraphiteTungsten-Rhenium

Already used in collimators active jaw

Already used for collimators, but not in the active jaw

R&D

TCP/

TCS

TCDI

TCLP

TCT

-

-

TCP/

TCS

TCP/

TCS/TCT

TCP/

TCS

TCP/

TCS/TCTTCT

Type Material

Slide5

CFC AC-150KAdColMat

- 21/7/2014

Elena Quaranta5

Main limitations:

Currently used as TCPs and TCSGs active jaw material

Developed by

Tatsuno

(Japan)Composition :

Graphite flakesCarbon fibersDensity: 1.67 g/cm3

Poor electrical conductivity (0.18 MS/m)

RF Impedance induced beam perturbations

Limited Radiation Hardness

Reduced Lifetime for LHC operations

N

eed for replacing degraded Collimators

Slide6

Outline

Overview of present LHC collimator materials

Post LS1 secondary collimator: material R&D

Copper-Diamond composite

Molybdenum-Diamond composite

Molybdenum-Graphite compositeReview of the tests

Summary

Slide7

Collimator material R&D

R&D focused on

Metal Matrix Composites  combine the properties of Diamond and Graphite (

high k, low CTE

low r and)

with those of Metals (σel)

AgCD

and MoCD are limited by, respectively, low melting temperature and difficulty to produce in large size and machine.

CuCD

MoCD

AgCD

MoGr

AdColMat

- 21/7/2014

Elena Quaranta

7

Materials investigated

are:

Silver-Diamond

(

AgCD

)

Copper-Diamond

(

CuCD

)

Molybdenum

-Diamond

(

MoCD

)

Molybdenum-Copper-Diamond

(

MoCuCD

)

Molybdenum

-Graphite

(

MoGr

).

Slide8

Outline

Overview of present LHC collimator materials

Post LS1 secondary collimator: material R&D

Copper-Diamond composite

Molybdenum-Diamond composite

Molybdenum-Graphite compositeReview of the tests

Summary

Slide9

Composition

:

60%v diamonds (90% 100

µm, 10% 45 µm)39%v

Cu powder (45 µm)1%v B powder (5 µm)

Copper-Diamond composite

BC “bridge” stuck on CD surface.

No CD graphitization

Developed by

RHP-Technology (Austria)

No diamond degradation

Thermal (

~490 Wm

-1

K

-1

) and electrical conductivity (

~12.6 MSm

-1

)

No direct interface between Cu and CD (lack of affinity). Partial bonding bridging assured by Boron Carbides limits mechanical strength (

~120

MPa

).

Cu low melting point (

1083 °C) CTE increases significantly with T due to high Cu content (from ~6 ppmK-1

at RT up to ~12 ppmK-1 at 900 °C)AdColMat - 21/7/2014Elena Quaranta9

L

imitation for collimator!

Slide10

Outline

Overview of present LHC collimator materials

Post LS1 secondary collimator: material R&D

Copper-Diamond composite

Molybdenum-Diamond composite

Molybdenum-Graphite compositeReview of the tests

Summary

Slide11

Molybdenum-Diamond composite

AdColMat - 21/7/2014

Elena Quaranta11

Low

melting phase (Cu) limiting operational temperature

Poor thermal properties (k=155 W/mK)Expensive raw materials and difficult sample machining

Why adding

Mo? Thermal stability (low CTE), mechanical strength, good affinity with C.Composition

& main production parameters: 40%v synthetic diamonds (45 µm)25%v Cu powder (45 µm)

35%v Mo powder (5 µm)

Powders pre-cleaning under H

2

-N

2

atmosphere at

600°C

RHP: 30 min at 1200°C, 30

MPa

applied pressure, reducing H

2

-N

2

atmosphere at 10

-4 mbar

MoCuCD: co-developed by and (Italy) during 2010-2011.

Slide12

Outline

Overview of present LHC collimator materials

Post LS1 secondary collimator: material R&D

Copper-Diamond composite

Molybdenum-Diamond composite

Molybdenum-Graphite compositeReview of the tests

Summary

Slide13

MoGR

: co-developed by and (Italy) during 2011-2012

Molybdenum-Graphite composite

AdColMat - 21/7/2014

Elena Quaranta13

Why switching to

graphite

? Low CTELow

densityHigh thermal conductivity High melting (degradation) pointLower cost (with respect to diamond)

Use solid state r

eaction

to

obtain strong Mo

2

C-graphite

interfaces:

2Mo + C => Mo

2

C

Mo

2

C:

stable

, electrically conductive.

The high content of Mo2C and the low strength of graphite however are limiting the material robustness …

Slide14

MoGRCF

: co-developed by and (Italy) since 2012.

Molybdenum-Graphite composite

AdColMat - 21/7/2014

Elena Quaranta14

Advantages

of Carbon

Fibers

:Mechanical strengthThermal conductivityAlong with MoC1-x ,

catalyze graphitization process

Addition

of

mesophase

pitch-base

carbon

fibers

Liquid Phase Spark Plasma Sintering (>

2500°

C)

Slide15

MG: composition and production

AdColMat - 21/7/2014

Elena Quaranta15

Basic composition

& main production parameters:

40%v

natural

graphite flakes (Asbury)20%v short carbon fibers (300 µm

, Cytek DKD)20%v long carbon fibers (3 mm,

Granoc XN-100-03Z), blended20%v

Mo

powder (

5 µm

)

Powders pre-cleaning under H

2

-N

2

atmosphere

at

600°

C

RHP: complete melting of Mo

2C at ~2600°C, 35 MPa applied pressure (in steps), reducing H2-N2

atmosphere at 10-4 mbar.MG 5220S plateGraphite and molybdenum powder

Slide16

Outline

Overview of present LHC collimator materials

Post LS1 secondary collimator: material R&D

Copper-Diamond composite

Molybdenum-Diamond composite

Molybdenum-Graphite compositeReview of the tests

Summary

Slide17

Summary of the tests (1)AdColMat

- 21/7/2014

Elena Quaranta17

Characterization

AC-150KCuCD

MG 3110PThermo-physical properties

Density

LFA (cp, k, diffusivity)DIL (α)

EmissivityElectrical properties

Electrical conductivity(SigmaTest v2.069)

!! If interested,

d

o not hesitate to ask for the values!!

Slide18

Main results of the testsAdColMat - 21/7/2014

Elena Quaranta

18

Properties

CFC

CuCD

MoGr

r

[

g/cm

3

]

1.67

5.33

2.65

a

y,z

(RT

to 1200° C

)

[10

-6

K

-1

]-1.32

7.8

<1.3

a

x

(RT to 1200° C)

[

10

-6

K

-1

]

9

-

7.9

k

y,z

(RT)

[

W/

mK

]

220

490

>770

k

x

(RT)

[

W/

mK

]

55

-

85

s

y,z

(RT)

[

MS/m]

0.18

12.6

1.1

s

x

(RT)

[

MS/m]

0.04

-

0.3

Slide19

AdColMat - 21/7/2014Elena Quaranta

19

Characterization

AC-150K

CuCDMG 3110

PMechanical properties

Elastic matrix constants

Flexural strength (σfl) * * *

Compressive strength *Dynamic

Outgassing

On-going

Coating

-

-

Scheduled

Summary of the tests (II)

with

Hopkinson

bar

@

PoliTo

(Italy)

@

GrindoSonic

(Belgium)

Slide20

AdColMat - 21/7/2014Elena Quaranta

20

Characterization

AC-150K

CuCDMG-3110P

Irradiation30 MeV protons

(KI, Russia)

26 MeV C-ions (KI, Russia)200 MeV proton + spallation neutron (BNL, USA)

On-goingOn-goingU-ions (GSI, Germany)Au-ions (GSI, Germany)

On-goingOn-going

On-going

(on MG 5220S)

Summary of the tests (III)

Slide21

Beam time: 13

th

-23rd July

On-Line monitoring and Post-M

ortem analysis on CFC, CuCD and MG 5220S samples are ON-GOING to assess property degradation under Au ions irradiation.

EuCARD2 - WP11

:Collimator Materials for fast High Density Energy Deposition

.Au24+

irradiation at GSIAdColMat - 21/7/2014Elena Quaranta21

Many thanks to M. Tomut and GSI material research group

Slide22

Outline

Overview of present LHC collimator materials

Post LS1 secondary collimator: material R&D

Copper-Diamond composite

Molybdenum-Diamond composite

Molybdenum-Graphite compositeReview of the tests

Summary

Slide23

SummaryAdColMat

- 21/7/2014

Elena Quaranta23

Different materials investigated to

replace CFC active jaw of secondary collimators for system upgrade

CuCD and MoGRCF

are the most performing

materials so farSeveral tests (thermo-physical, mechanical, irradiation) performed/on going on present and possible future collimator materials

Slide24

Summary – what is still missing?AdColMat

- 21/7/2014

Elena Quaranta24

CFC

:EmissivityFlexural test (with strain gauges)

Dynamic testsCuCD

:

EmissivityFlexural test (with strain gauges)Dynamic testsElastic constantsCompressive strengthOutgassing

MoGr:Flexural test (with strain gauges)Dynamic testsElastic constantsCompressive strength

Slide25

Thank you

for your attention

Slide26

Backup slides

Slide27

AdColMat - 21/7/2014Elena Quaranta

27

Numero

Placca

ID

Stampo

%Vol Mo% Vol GR

%Vol Fibre Corte (CY)% Vol Fibre Lunghe (GRA)

%Vol

Altro

T (C)

t (s)

P (Mpa)

Atmosphere

Data

Densita’ Teorica (g/cm3)

Densita’ (g/cm3)

Compat-tazione

Cond

Elettrica

(MS/m)

Cond

Termica

(W/

mK)Resistenza a Flessione (MPa

)1MG-1220-A70x55 mm2060200022001200350.1 mbar, 97%-N2, 3% H2Jun-123.91213.6894.07%0.6124059

2

MG-1130-A70x55 mm

20

40

40

0

0

2200

1200

35

0.1 mbar, 97%-N

2

, 3% H

2

Jun-12

3.9121

3.65

93.30%

0.41

200

45

3

MG-1140-A

70x55 mm

20

40

20

20

0

2200

1200

35

0.1 mbar, 97%-N

2

, 3% H

2

Jun-12

3.9121

3.65

93.30%

0.98 (centro)

315

53

4

MG-1350-A

70x55 mm

20

20

30

30

0

2200

1200

35

0.1 mbar, 97%-N

2

, 3% H

2

Jun-12

3.9121

3.53

90.23%

0.3

200

37

4-Bis

MG-1360-A

70x55 mm

20

20

30

30 Separata

0

2200

1200

35

0.1 mbar, 97%-N

2

, 3% H

2

Jul-12

3.9121

3.73

95.35%

0.42

205

77.5

5

MG-1411-B

ø80H4

20

30

20

20 Separata

10% CD 3 µm

2200

1200

35

10

-3

mbar, vacuum

05/02/2013

3.8218

3.66

95.77%

0.27

139

49

6

MG-1571-B

ø80H4

20

50

0

20 Separata

10% CD 3 µm

2200

1200

35

10-3 mbar, vacuum

05/02/2013

3.8218

3.68

96.29%

0.41

187

43

7

MG-1280-B

ø80H4

20

60

0

18 Separata (+2% Si)

0

2200

1200

35

10-3 mbar, vacuum

05/02/2013

3.9463

3.7394.52%0.52

199

57

8

MG-1270-D

ø80H4

20

60

0

20 separata

0

2400

1200

35

-

-

3.9121

-

-

 

-

-

9

MG-1690-A

ø90H4

20

25

55

0

0

2200

1200

35

0.1 mbar, 97%-N

2

, 3% H

2

09/03/2013

3.9121

3.5186

89.94%

0.21

150

28.4

10

MG-1110-A

ø90H4

20

40

20

20 separata

0

2200

1200

35

0.1 mbar, 97%-N

2

, 3% H

2

09/03/2013

3.9121

3.6935

94.41%

1.1 centro, 0.5 lati

367

74.5

10/1

MG-1110-A

ø90H420402020 separata022001200350.1 mbar, 97%-N2, 3% H226/03/20133.91213.6994.32%0.52--10/2MG-1110-Aø90H420402020 separata022001200350.1 mbar, 97%-N2, 3% H226/03/20133.91213.7395.35%0.51--10/3MG-1110-Aø90H420402020 separata022001200350.1 mbar, 97%-N2, 3% H226/03/20133.91213.794.58%0.5--10/4MG-1110-Aø90H420402020 separata022001200350.1 mbar, 97%-N2, 3% H226/03/20133.91213.794.58%0.5245-10/5MG-1110-Cø90H420402020 separata023001200350.1 mbar, 97%-N2, 3% H212/04/20133.91213.7194.83%0.48--10/6MG-1110-Dø40H420402020 separata024001200350.1 mbar N213/04/20133.91213.7495.60%0.88 centro, 0.62 lati--10/7MG-1110-Eø90H420402020 separata024201200350.1 mbar N226/04/20133.91213.6894.07%0.99 centro, 0,5 lati--10/8MG-1110-Eø90H420402020 separata024201200350.1 mbar N226/04/20133.91213.6894.07%0.92 c, 0.5 lati--10/9MG-1110-Eø90H420402020 separata024201200350.1 mbar N226/04/20133.91213.6693.56%0.90 c, 0.5 l--10/10MG-2110-Fø90H420402020 separata025601200350.1 mbar N226/04/20133.91212.78*Mo2C flow out - No compaction available0.957207360mm-1MG-1110-Gø60H22.820402020 separata01692*1200350.1 mbar N206/10/20133.91213.7295.09%0.62706560mm-2MG-1110-Hø60H22.820402020 Separata01735 *1200350.1 mbar N231/10/20133.91213.897.13%0.7  60mm-3MG-1110-Jø60H22.120402020 Separata01775*1200350.1 mbar N205/11/20133.91213.7896.62%0.7125  60mm-4MG-1110-Kø60H22.520402020 Separata01805*1200350.1 mbar N213/11/20133.91213.7395.35%0.8  80mm-5MG-1110-Lø80H17.520402020 Separata01920*400350.1 mbar N229/11/20133.91213.525790.12%1.022 (parte fusa)--80mm-6MG-1110-Mø80H17.520402020 Separata0  350.1 mbar N205/12/20133.91213.692.02%1.005/0.9518085? mm-7MG-1110-N        350.1 mbar N3       90mm-8MG-1110-Pø90H5.520402020 Separata02000600350.1 mbar N403/02/20143.723.65 1.16/0.7  90mm-9MG-3110-Qø90H5.2520402020 Separata02005350350.1 mbar N505/02/20143.722.62Mo2C flow out - No compaction available1.00 (centro)/0.92(periferia) 8090mm-10MG-4110-Pø90H16.520402020 Separata0  350.1 mbar N507/02/20143.52.669 1.13(centro)/1.12(metà)/0.96(bordo)90 (from LFA @CERN)85

Many plates have been produced so far…

Standard ID to

identify them uniquely

!

Slide28

NomenclatureAdColMat

- 21/7/2014

Elena Quaranta28

MG # # # # A

M

aterial

C

omposition

Production cycle

Molybdenum

Graphite

%v Mo or Mo

2

C

(final)

# = 0…9 => each

digit corresponds to initial* component content in composite

*first digit correspond to: %v

in

Mo

if no melting

%

vfin Mo2C if melting with Mo2Cflow out%v Gr%v CF%v other elements(A…Z)Info about:Tcycletcyclepatmosphere

Slide29

Where to access the info…AdColMat

- 21/7/2014

Elena Quaranta29

DFS folder: G:\Departments\EN\Projects\MME_MechanicalEngineering\Elena.Quaranta\Materials\

Nomenclature legend:

…\MG_legend.xlsxNew classification of MG plates: …\MoGRCF_Summary_newName.xlsx

Slide30

Nomenclature: some exampleAdColMat

- 21/7/2014

Elena Quaranta30

MG 1110 A

20%v Mo, 40% GR, 40% CF, 0% othersA=1200s at 2200°C, 35MPa, H

2-N2 at 10-4 mbar

ρ=3.7 g/cm

37.6%v Mo2C, 40% GR, 40% CF, 0% othersF=2560°C for1200s,

35MPa, N2 at 10-4 mbarρ=2.78 g/cm3MG 2110 F

Mo2C melt and flowed out for the first time

6.2%v Mo

2

C

,

40% GR, 40% CF, 0% others

Q

=2005°C (pyrometer) for 350s,

35MPa,

N

2

at 10

-4

mbar

ρ=2.62 g/cm

3MG 3110 Q

6%v Mo2C, 40% GR, 40% CF, 0% others

P=2000°C (pyrometer) for 600s, 35MPa, N2 at 10-4 mbarρ=2.67 g/cm3MG 3110 P Fully characterized: outstanding electrical and thermal properties, low density!

Slide31

Last produced plate: 23/06/2014AdColMat

- 21/7/2014

Elena Quaranta31

MG 5220 S

Ø 90mm x 24.29mm => THICK plate!

≈4%v Mo2

C, 96%

v graphite + CFT=2600°C (pyrometer) for 600s, 35MPa, N2 at 10-4 mbarρ

=2.65 g/cm3

Slide32

Irradiation campaign at BNL

ON-

GOING irradiation and post-irradiation studies

on Molybdenum, Glidcop, CuCD

, MoGRCF

200 MeV proton and spallation neutron

(by ~120 MeV protons)

irradiation @BLIP

Mo-Graphite

Graphite

C/C

Proton beam profile

Energy deposited in target

Proton beam profile

Spallation Neutron profile

AdColMat

- 21/7/2014

Elena Quaranta

32

Slide33

Irradiation campaign at BNL

28

MeV proton irradiation for very localized proton-induced damage @Tandem van de Graaff

X-Ray Diffraction studies @

NSLS

(100-200

keV

X-rays)

AdColMat - 21/7/2014Elena Quaranta33