/
1 Unit 5.5 Transform Plate Boundaries 1 Unit 5.5 Transform Plate Boundaries

1 Unit 5.5 Transform Plate Boundaries - PowerPoint Presentation

ripplas
ripplas . @ripplas
Follow
344 views
Uploaded On 2020-07-01

1 Unit 5.5 Transform Plate Boundaries - PPT Presentation

Transform Plates 2 Along a transform plate boundary also called transform fault plates slide horizontally past one another without producing or destroying lithosphere The nature of transform faults was discovered in 1965 by Canadian geologist J ID: 792090

transform plate plates pangaea plate transform pangaea plates years million breakup future boundaries faults tectonics north atlantic ocean changing

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "1 Unit 5.5 Transform Plate Boundaries" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

1

Unit 5.5

Transform Plate Boundaries

Slide2

Transform Plates

2

Along a transform plate boundary, also called transform fault

, plates slide horizontally past one another without producing or destroying lithosphere.The nature of transform faults was discovered in 1965 by Canadian geologist J.

Tuzo

Wilson

, who proposed that these large faults connect two spreading centers or two trenches.

Slide3

Transform Plates

3

Most transform faults are found on the ocean floor,

where they offset segments of the oceanic ridge system.Typically, transform faults are part of prominent linear breaks in the seafloor known as fracture zones, which include both active transform faults and their inactive extensions into the plate interior.

Slide4

4

Slide5

Transform Plates

5

The

trend of these fracture zones roughly parallels the direction of the plate motion at the time of their formation.Thus,

these structures are useful in mapping the direction of plate motion in the geologic past.

Slide6

Transform Plates

6

In another role, transform faults provide the means by which the oceanic crust created at ridge crests can be transported to a deep-ocean trench, where it will be destroyed.

Most transform fault boundaries are located within the ocean basins; however, a few cut through continental crust.

Slide7

7

Slide8

Changing of Plate Boundaries

8

Although the total surface of the Earth does not change, the size and shape of individual plates are constantly changing.

For example, the African and Antarctic plates are continually growing due to being at sites of seafloor production.

Slide9

Changing of Plate Boundaries

9

By contrast, the Pacific plate is decreasing in size due to subduction

.Plate

boundaries can be created or destroyed in response to changes in the forces acting on the lithosphere.

Slide10

Changing of Plate Boundaries

10

Plates

can be ripped apart due to tensional forces and plates can merge into one, due to compressional forces. The

breakup of Pangaea is a classic example of how plate boundaries change through time.

Slide11

Breakup of Pangaea

11

Wegener used evidence from fossils, rock types, and paleoclimate to create a jigsaw-puzzle fit of the continents, thereby creating the supercontinent of Pangaea.

In a similar manner,

geologists have recreated the steps in the breakup of Pangaea, an event that took place about 180 million years ago.

Slide12

Breakup of Pangaea

12

From this work,

the dates when individual crustal fragments separated from one another and their relative motions have been well-established.

Slide13

Breakup of Pangaea

13

The

first major event during the breakup of Pangaea was the separation of North America and Africa, which marked the opening of the North Atlantic.

This

occurred about 150 million years ago.

Slide14

Breakup of Pangaea

14

By

90 million years ago, the South Atlantic had opened.

Continued

breakup in the Southern Hemisphere led to the separation of Africa, India, and Antarctica.

Slide15

Breakup of Pangaea

15

About 50 million years ago, Southeast Asia had docked with Eurasia, while India continued its northward journey.

At about 20 million years ago, India had begun its ongoing collision with Eurasia to create the Himalayas and the Tibetan Highlands.

Slide16

Breakup of Pangaea

16

During

the past 20 million years of Earth’s history, Arabia has rifted from Africa created the Red Sea, while Baja California, has separated from Mexico to form the Gulf of California

.

https://

vimeo.com/14258924

Slide17

Plate Tectonics in the Future

17

Based on present-day movement of the plates, geologists have been able to predict the likely course of movements of the tectonic plates in the geologic future – 50 million years and 250 million years.

Slide18

Plate Tectonics in the future

18

Over the next 50 million years, the world might look as follows.

In North America, the Baja Peninsula will slide past the North American plate.

If this northward migration continues, the Baja Peninsula will

collide with the Aleutian Islands.

Slide19

Plate Tectonics in the future

19

If Africa continues moving northward, it

will collide with the Eurasian plate, closing the Mediterranean and initiating another major mountain building episode.Australia will be along the equator and along with New Guinea, will collide with Asia.

North and South America will begin to separate.

Slide20

Plate Tectonics in the future

20

A few geologists have even speculated on the nature of the globe

250 million years in the future.The

next supercontinent may form as a result of subduction of the floor of the Atlantic Ocean, resulting in the collision of the Americas with the Eurasian-African landmass.

Slide21

Plate Tectonics in the future

21

Support for the possible closing of the Atlantic comes from a similar event when an ocean that predates the Atlantic closed during the formation of Pangaea.

During the next 250 million years, Australia is projected to collide with Southeast Asia.

Slide22

Plate Tectonics in the future

22

If

this scenario is accurate, the dispersal of Pangaea will end when the continents reorganize into the next supercontinent.

https://

www.youtube.com/watch?v=cW6rMzSOmvU