/
Analytic thermoelectric couple modeling variable material properties a Analytic thermoelectric couple modeling variable material properties a

Analytic thermoelectric couple modeling variable material properties a - PDF document

scarlett
scarlett . @scarlett
Follow
342 views
Uploaded On 2021-09-14

Analytic thermoelectric couple modeling variable material properties a - PPT Presentation

Jon MackeyMechanical Engineering University of AkronMaterials Science and Engineering Case Western Reserve UniversityFred DynysNASA Glenn Research CenterNASA Cooperative Agreement NNX08AB43ANASAUSRA ID: 880407

couple analytic modeling classic analytic couple classic modeling conversion model solution electrical asymptotic expansion variable system efficiency parameters properties

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Analytic thermoelectric couple modeling ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 Analytic thermoelectric couple modeling:
Analytic thermoelectric couple modeling: variable material properties and transient operation Jon MackeyMechanical Engineering, University of AkronMaterials Science and Engineering, Case Western Reserve UniversityFred DynysNASA Glenn Research CenterNASA Cooperative Agreement: NNX08AB43ANASA/USRA Contract: 04555-004 Thermoelectricity Spacecraft Power GPHS-RTG (Galileo/Ulysses) Study of the coupled transport of electr

2 ical and thermal energy.Solid-state phen
ical and thermal energy.Solid-state phenomenon requires no moving parts or working fluids, and generates no noise, torque, or vibrations.As a result thermoelectric devices are extremely reliable.Power GenerationSpacecraft, automotive, aerospace, gas pipelines, well sites, and offshore platforms.RefrigerationOn chip cooling, electronics, and automotive. High reliability, low conversion efficiency. Bennett et al. AIP

3 Proceedings (2008) 663-671.Radioisotope
Proceedings (2008) 663-671.Radioisotope thermoelectric generators (RTG) have powered 45 spacecraft.Voyager (1977), Ulysses (1990), Cassini (1997), New Horizons Lange et al. Energy Conversion and Management (2008) 391-401. Analytic Couple Modeling1 of 7 Analytic Couple Modeling1 of 7 Thermoelectricity Spacecraft Power GPHS-RTG (Galileo/Ulysses) Study of the coupled transport of electrical and thermal energy.Solid-sta

4 te phenomenon requires no moving parts o
te phenomenon requires no moving parts or working fluids, and generates no noise, torque, or vibrations.As a result thermoelectric devices are extremely reliable.Power GenerationSpacecraft, automotive, aerospace, gas pipelines, well sites, and offshore platforms.RefrigerationOn chip cooling, electronics, and automotive. High reliability, low conversion efficiency.Bennett et al. AIP Proceedings (2008) 663-671.Radiois

5 otope thermoelectric generators (RTG) ha
otope thermoelectric generators (RTG) have powdered 45 spacecraft.Voyager (1977), Ulysses (1990), Cassini (1997), New Horizons Lange et al. Energy Conversion and Management (2008) 391-401. A na ytic Coup l e Mode l in l e c d a result thermoelectric devicesareextremelyreliable. efficiency. 71. Radioisotope thermoelectric generators ioisotope t h ermoe ectric enerato G) have powdered 45 spacecraft. • Voya er (19

6 77), Ulysses (1990), Cassini , New Hor
77), Ulysses (1990), Cassini , New Horizons ( 2006 , and Curiosit y ( L an g e et a l . Ener g y Conversion and Mana g ement ( 2008 391 - 4 4 4 4 4 4 4 4 4 4 0 Curiosity y of the coupled transport of c c c c c c c c t t rica and t h erma ener g y. tate p h enomenon requires m m m m m m m m m m m m ovin parts or workin g fluids, d d g enerates no noise, tor q ue, or r r r r r a a a a a a a a ti o n

7 s . New Horizons devices are extreme
s . New Horizons devices are extremel y reliable. P e r G e n e r a acecraft, automotive, a erospace, as pipe l ines, we ll s ites, and offshore platforms. R R R R R R R R R R R efri eratio On c h ip coo l in , e l ectronics, and au t o m o g h reliability, low conversion e e e e e e e e e e e e e e e f f f f f f f f f f f f f f f f f f f f f f f f i i i i i i i i i i i i c c c c c c c c c c c c i i i i

8 i i i i i i i i e e e e e e e e e e e e
i i i i i i i i e e e e e e e e e e e e n n n n n n n n n n n n c c c c c c c c c c c c y y y y y y y y y y y y . . . . Voyager al BennettetalAIPProceedings (2008) (2008)663 - Photos nasa.gov Analytic Couple Modeling1 of 7 Thermoelectricity Spacecraft Power GPHS-RTG (Galileo/Ulysses) Study of the coupled transport of electrical and thermal energy.Solid-state phenomenon requires no moving parts or working flu

9 ids, and generates no noise, torque, or
ids, and generates no noise, torque, or vibrations.As a result thermoelectric devices are extremely reliable.Power GenerationSpacecraft, automotive, aerospace, gas pipelines, well sites, and offshore platforms.RefrigerationOn chip cooling, electronics, and automotive. High reliability, low conversion efficiency.Bennett et al. AIP Proceedings (2008) 663-671.Radioisotope thermoelectric generators (RTG) have powdered 4

10 5 spacecraft.Voyager (1977), Ulysses (19
5 spacecraft.Voyager (1977), Ulysses (1990), Cassini (1997), New Horizons Lange et al. Energy Conversion and Management (2008) 391-401. A na ytic Coup l e Mode l in wer lysses) tudy of the co u e l and t h • Sol i d tate p h e n o movin g parts a n d g enerates n vi a ti o n s . a esul evices a r • Po w e r G e n e r a pacecra erospac e ites, and • R efri eratio On c h ip c au t o m o g h reliabilit y efficienc

11 Bennett et al. AIP Proceedings s (2008)
Bennett et al. AIP Proceedings s (2008) (2008)663 671. 671 enerators acecraft. s (1990), o rizons Lange et al. Energy Conversion and Management 2008 391 - 4 0 led transport of e e e e e e e e e e e e rma ener g y . o menon requires r workin g fluids, o o o o o o o o o o o o noise, torque, or • R adioisotope t h ermoe RTG) have p owdered 45 Voya er (1977), Ulys s s s s e e e e e Cassini , New H H H H H

12 H H o ( 2006), and Curiosity ( ( ( ( (
H H o ( 2006), and Curiosity ( ( ( ( ( ( Global TE l t t t t t t t t t t t t t t t t t t t t t t t t h h h h h h h h h h h h e e e e r r r r m m m m o o o o e e e e l l l l l l l l l l l l e e e e c c c c t t t t t t t t t t r r r r i i i i i i i i i i i i c c c c r r r r r r r r r e e extreme l y re l ia . i , automotive, e e e e e e e e e e e , g as pipe l ines, we ll ffshore latforms. l , e l ectronics

13 , and v v v v v v v v v v v v e . low
, and v v v v v v v v v v v v e . low conversion B B B B B B B B e e e e e e e e n n n n n n n n n n n n n n n n e e e e e e e e t t t t t t t t t t t t t t t t e t a l . A I P P r o c e e d i n g s s g e g y g 2 of 7 Irreversible Thermodynamics Thermocouple Ohm’s Law Fourier’s Law 1931 Lars Onsager discussed coupled irreversible processes to unify thermoelectric phenomena into a single stud

14 y.Study results in two transport laws fo
y.Study results in two transport laws for a thermoelectric conductor. Analytic Couple Modeling Analytic Couple Modeling Classic Model Classic Parameters Electrical-System- ܼ൫ܺ ͳ൅ሺ Classic Solution Geometric- Materials- Analytic Couple Modeling Classic Model Classic Parameters Electrical-System- ܼ൫ܺ ͳ൅ሺ Classic Solution Geometric- Materials- Four Assumptions Analyti

15 c Couple Modeling Classic Model Classic
c Couple Modeling Classic Model Classic Parameters Electrical-System- ܼ൫ܺ ͳ൅ሺ Classic Solution Geometric- Materials- Analytic Couple Modeling Classic Model Classic Parameters Electrical-System- ܼ൫ܺ ͳ൅ሺ Classic Solution Geometric- Materials- Analytic Couple Modeling Classic Model Classic Parameters Electrical-System- ܼ൫ܺ ͳ൅ሺ Classic Solution G

16 eometric- Materials- Analytic Couple Mod
eometric- Materials- Analytic Couple Modeling Classic Model Classic Parameters Electrical-System- ܼ൫ܺ ͳ൅ሺ Classic Solution Geometric- Materials- Analytic Couple Modeling Classic Model Classic Parameters Electrical-System- ܼ൫ܺ ͳ൅ሺ Classic Solution Geometric- Materials- Analytic Couple Modeling Classic Model Classic Parameters Electrical-System- ܼ൫ܺ ͳ൅áˆ

17 º Classic Solution Geometric- Ma
º Classic Solution Geometric- Materials- Analytic Couple Modeling Classic Model Classic Parameters Electrical-System- ܼ൫ܺ ͳ൅ሺ Classic Solution Geometric- Materials- Analytic Couple Modeling Classic Model Classic Parameters Electrical-System- Geometric- ܼ൫ܺ ͳ൅ሺ Classic Solution Materials- Analytic Couple Modeling Classic Model Classic Parameters Electrical-Sys

18 tem- Geometric- ܼ൫ܺ ͳ൅ሺ
tem- Geometric- ܼ൫ܺ ͳ൅ሺ Classic Solution Materials- o ytic Coup l e Mode l in a r a m e t e r s Solu ti Mackey et al. Applied Energy (2014) 374-381. Solution Parameters ݋݌ݐܼ൫ܺ Analytic Couple Modeling Variable Properties Model Asymptotic Expansion Material Properties by Asymptotic Expansion- Variable Seebeck οܶܶ οܶܶ οܵοܶ οܵοܶ ෤൫ߩοܶܶ Analytic Couple Modeling V

19 ariable Properties Model Asymptotic Expa
ariable Properties Model Asymptotic Expansion Material Properties by Asymptotic Expansion- Variable Seebeck οܶܶ οܶܶ οܵοܶ οܵοܶ ෤൫ߩοܶܶ Analytic Couple Modeling οܶܶ οܶܶ ෤൫ߩοܶܶ Variable Properties Model Asymptotic Expansion Material Properties by Asymptotic Expansion- Variable Seebeck οܵοܶ οܵοܶ 4 ytic Coup l e Mode l in Variable Properties aterial Pro p erties b y As y m

20 p t Asymptotic Expansion Method Tx Lead
p t Asymptotic Expansion Method Tx Leading order temperature solutionFirst order temperature correctionCombined temperature solution Material Properties οܶܶ ෤൫ߩοܶܶ οܶܶ 0 Analytic Couple Modeling οܶܶ οܶܶ ෤൫ߩοܶܶ Variable Model Asymptotic Expansion Material Properties by Asymptotic Expansion- Variable Solution οܶܶ ෤൫ߩοܶܶ οܵοܶ οܵοܶ 7 Analytic Couple Modeling Materi

21 al Properties by Asymptotic Expansion a
al Properties by Asymptotic Expansion a Solu ti S Conversion Efficiency 6.00% Asymptotic Expansion TS Conversion Efficiency 6.30% Variable Seebeck a n n n n n n n n n n n s s TS Conversion Efficiency 6.15% οܶܶ Analytic Couple Modeling οܶܶ οܶܶ ෤൫ߩοܶܶ Variable Model Asymptotic Expansion Material Properties by Asymptotic Expansion- Variable Solution οܶܶ ෤൫ߩοܶܶ οܵοܶ οܵοܶ 7 Analyti

22 c Couple Modeling Material Properties by
c Couple Modeling Material Properties by Asymptotic Expansion a Solu ti k Conversion Efficiency 5.84% Asymptotic Expansion Tk Conversion Efficiency 6.69% 4 4 4 4 4 4 4 4 4 4 4 4 o o o o o o o o o o o f f f f f f f f f f f f 7 7 7 7 7 7 7 7 7 7 7 7 e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l i i i i i i i i i i i i n n n n n n n n n n n g g g g g g g g g g g Variable Thermal a n n n n n n n n n n n s

23 s Tk Conversion Efficiency 6.15% οܶܶ
s Tk Conversion Efficiency 6.15% οܶܶ Analytic Couple Modeling οܶܶ οܶܶ ෤൫ߩοܶܶ Variable Model Asymptotic Expansion Material Properties by Asymptotic Expansion- Variable Solution οܶܶ ෤൫ߩοܶܶ οܵοܶ οܵοܶ 7 Analytic Couple Modeling Material Properties by Asymptotic Expansion a Solu ti Conversion Efficiency 6.20% Asymptotic Expansion T Conversion Efficiency 6.10% 4 4 4 4 4 4 4 4 4 4 4

24 4 o o o o o o o o o o o f f f f f f f f
4 o o o o o o o o o o o f f f f f f f f f f f f 7 7 7 7 7 7 7 7 7 7 7 7 e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l i i i i i i i i i i i i n n n n n n n n n n n g g g g g g g g g g g Variable Resistivity a n n n n n n n n n n n s s T Conversion Efficiency 6.15% ෤൫ߩοܶܶ Variable Property Model Summary MaterialProperty Temperature ConversionEfficiencySensitivity Absolute Seebeck Coefficient El

25 ectrical Resistivity ܵ݁݊ݏ݅ݐ݅ݒ݅Ý
ectrical Resistivity ܵ݁݊ݏ݅ݐ݅ݒ݅ݐݕ Analytic Couple Modeling Tk Conversion Efficiency 6.69% TS Conversion Efficiency 6.30% T Conversion Efficiency 6.10% Analytic Couple Modeling Transient Model Green’s Function Solution Electrical-System- Transient Parameters ܽݒ݃ܽݒ݃ ܽݒ݃ܽݒ݃ Thermal diffusivity factor-Inductance factor- Analytic Couple Modeling Transient Model Green’s Function Solution Electrical

26 -System- Transient Parameters ܽݒ݃ܽ
-System- Transient Parameters ܽݒ݃ܽݒ݃ ܽݒ݃ܽݒ݃ Thermal diffusivity factor-Inductance factor- Analytic Couple Modeling Transient Model Green’s Function Solution Electrical-System- Transient Parameters ܽݒ݃ܽݒ݃ ܽݒ݃ܽݒ݃ Thermal diffusivity factor-Inductance factor- 6 o ytic Coup l e Mode l in a n s i e nt M odel Gr c ti o u ti e e stem factor hermal diffusivit y Thermal Green’s Function Eigenf

27 unctionexpansion- Temperature- Eigenvalu
unctionexpansion- Temperature- Eigenvalue- Analytic Couple Modeling Transient Model Green’s Function Solution Electrical-System- 7 Analytic Couple Modeling a n s i e nt M odel Green’s Function Solution T h e e System Transient Parameters ܽݒ݃ܽݒ݃ ܽݒ݃ܽݒ݃ Thermal diffusivity factor-Inductance factor- t t t t t t t t t t t e m Periodic On/Off Operation Design Guideline ൌͳ൅ Analytic Couple Modeling Tra

28 nsient Model Green’s Function Solution E
nsient Model Green’s Function Solution Electrical-System- L+4E* Q:T;T; L:TF; Q:T;L–):B 7 Analytic Couple Modeling a n s i e nt M odel Gr c ti o u ti e e stem Transient Parameters =RC=RC =RC=RC Thermal diffusivity factor-Inductance factor- Sinusoidal Operation Power Output Amplitude Acknowledgements Tom Sabo, Ray Babuder, Ben KowalskiNASA Glenn Research Center/ Case Western Reserve UniversityDr. Sabah Bux, Dr. Jean

29 -Pierre NASA Cooperative Agreement: NASA
-Pierre NASA Cooperative Agreement: NASA/USRA Contract:Asymptotic expansions are an effective means of understanding thermocouple behavior.Conversion efficiency is most sensitive to thermal conductivity temperature Thermal diffusivity factorGoverns transient operation of a thermocouple, with an ideal value of unity.Inductance factor Governs the balance between thermal and electrical inductance. Analytic Couple Model