/
Towards Polynomial Lower Bounds for Dynamic Problems Mihai P atrascu ATT Labs ABSTRACT Towards Polynomial Lower Bounds for Dynamic Problems Mihai P atrascu ATT Labs ABSTRACT

Towards Polynomial Lower Bounds for Dynamic Problems Mihai P atrascu ATT Labs ABSTRACT - PDF document

sherrill-nordquist
sherrill-nordquist . @sherrill-nordquist
Follow
554 views
Uploaded On 2014-12-14

Towards Polynomial Lower Bounds for Dynamic Problems Mihai P atrascu ATT Labs ABSTRACT - PPT Presentation

Our result is modular 1 We describe a carefullychosen dynamic version of set disjointness the multiphase problem and conjecture that it requires 84861 time per operation All our lower bounds follow by easy reduction 2 We reduce 3SUM to the multipha ID: 24025

Our result modular

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Towards Polynomial Lower Bounds for Dyna..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

highestknowndynamiclowerboundinthecell-probemodelremains (lgN),foranyexplicitproblem[16].1.2TheMultiphaseProblemOur rstcontributionisaneasycriterionforarguingthataproblemmaynotadmitsolutionsinpolylogarithmictime.Letusde nethefollowingmultiphaseproblem,whichises-sentiallyadynamicversionofsetdisjointness:PhaseI.Wearegivenksets,S1;:::;Sk[n].WemaypreprocessthesetsintimeO(nk).PhaseII.WearegivenanothersetT[n],andhavetimeO(n)toreadandupdatememorylocationsfromthedatastructureconstructedinPhaseI.PhaseIII.Finally,wearegivenanindexi2[k]andmust,intimeO(),answerwhetherSiisdisjointfromT.Observethatthesizesofthesetsarenotprescribed(ex-ceptthatjSij;jTjn).TheinputinPhaseIconsistsofO(nk)bits,theinputofPhaseIIofO(n)bits,andthein-putofPhaseIIIofO(lgn)bits(onewordintheWordRAMmodel).Thus,therunningtimeallowedineachphaseisproportionaltothemaximuminputsizeinthatphase,withastheproportionalityfactor.Wesetforththefollowingconjectureaboutthehardnessofthemultiphaseproblem,expressedintermsofourunifyingparameter.Conjecture1.Thereexistconstants �1and�0suchthatthefollowingholds.Ifk=(n ),anysolutiontothemultiphaseproblemintheWordRAMmodelrequires= (n).Webrie ymotivatethesettingofparametersinthecon-jecture.Certainly,n,sincePhaseIIIcansimplyexam-inealltheelementsofSiandT.Furthermore,itseemssome-whatquestionabletoassumeanythingbeyond= (p n),sincetheconjecturewouldfailforrandomsets(assetsofdensitymuchhigherthanp nintersectwithhighprobabil-ity).Weonlyassume= (n)forgenerality.Theconjectureissaferforkn.Indeed,PhaseIIcantrytocomputetheintersectionofTwithallsetsSi(abooleanvectorofkentries),makingPhaseIIItrivial.ThisisachievednaivelyintimeO(kn),butfasteralgorithmsarepossibleviafastmatrixmultiplication.However,ifPhaseIIonlyhastimenk,itcannothopetooutputavectorofsizekwithallanswers.Ontheotherhand,wedonotwantktobetoohigh:weaskthatkn ,sincewewantapolynomiallowerboundintermsofthetotalinputsize(thatis,weneedn=(kn) (1)).Implications.ThevalueofthisconjectureliesintheeasyreductionsfromittotheproblemslistedinSection1.1.Inparticular,weobtain:Theorem2.Ifthemultiphaseproblemishard(inthesenseofConjecture1),thenforeveryproblemlistedinx1.1,thereexistsaconstant"�0suchthattheproblemcannotbesolvedwitho(N")timeperoperationando(N1+")pre-processingtime.Proofsketch.TheproofappearsinAppendixA.Here,webrie yillustratetheeaseofthesereductionsbyprovingthehardnessofErickson'sproblem.Assumewehaveafastdatastructureforthisproblem.Toconstructasolutionforthemultiphaseproblem,eachphaserunsasfollows:I.ThedatastructureisaskedtopreprocessamatrixMofknbooleanvalues,whereM[i][j]=1i j2Si.II.Foreachelementj2T,incrementcolumnjinM.III.Giventheindexi,incrementrowiinM,andthenaskforthemaximumvalueinthematrix.ReportthatSiintersectsTi themaximumvalueis3.ObservethatamaximumvalueofM[i][j]=3canonlyhappenif:(1)theelementwasoriginallyone,meaningj2Si;(2)thecolumnwasincrementedinPhaseII,meaningj2T;(3)therowwasincrementedinPhaseIII,indicatingSiwasthesetofinterest.Thus,M[i][j]=3i Si\T6=;.TheinputsizeforErickson'sproblemisO(nk)bits.IfthepreprocessingisdoneinO((nk)1+")andeachoperationissupportedinO((nk)")time,thentherunningtimeinthemultiphaseproblemwillbe:O((nk)1+")forPhaseI;O(n(nk)")inPhaseII;andO((nk)")inPhaseIII.Thus,wehaveasolutionwith=(nk)".ThiscontradictsConjecture1for( +1)".Thus,wehaveshownalowerboundof �(nk)=( +1)= (N=( +1))forErickson'sproblem. 1.3On3SUM-HardnessThe3SUMproblemasks,givenasetSofnnumbers,to nddistinctx;y;z2Ssuchthatx+y=z.TheproblemcanbesolvedeasilyinO(n2)time,anditisalong-standingconjecturethatthisisessentiallythebestpossible(seebe-low).Justlikeprogressondynamiccell-probelowerboundshasbeentooslowtoimpactmanynaturaldynamicproblems,progressonlowerboundsforoinealgorithms(or,inpartic-ular,circuitlowerbounds)isunlikelytoanswermanyofourpressingquestionsverysoon.Instead,itwouldbeofgreatinteresttoargue,basedonsomewidely-believedhardnessassumption,thatnaturalalgorithmicproblemslike ndingmaximum oworcomputingtheeditdistancerequiresu-perlineartime.The3SUMconjectureisperhapsthebestproposalforthishardnessassumption,sinceitisacceptedquitebroadly,anditgivesarathersharplowerboundforaverysimpleprobleminthelowregimeofpolynomialtime.Unfortunately,thehopeofusing3SUMappearstoooptimisticwhencontrastedwiththecurrentstateof3SUMreductions.GajentaanandOvermars[10]werethe rsttouse3SUMhardnesstoargue (n2)lowerboundsincomputationalge-ometry,forproblemssuchas nding3collinearpoints,min-imumareatriangle,separatingnlinesegmentsbyaline,determiningwhethernrectanglescoveragivenrectangle,etc.Subsequently,furtherproblemssuchaspolygoncon-tainment[3]ortestingwhetheradihedralrotationwillcauseachaintoself-intersect[20]werealsoshowntobe3SUM-hard.Allthesereductionstalkabouttransformingthecondi-tionx+y=zintosomegeometricconditionon,e.g.,thecollinearityofpoints.Formally,suchreductionsworkeveninanalgebraicmodel,morphingthe3SUMinstanceintoaninstanceoftheotherproblembycommonarithmetic.Bycontrast,wewouldlikereductionstopurelycombinatorialquestions,talkingaboutgraphs,strings,etc.Suchproblems shewouldknowtheentireinput,andcouldannouncetheresultwithnofurthercommunication.Onemustalsoensurethat �1+.Otherwise,Alice'smessagewouldhavenMkbits,andcouldincludeak-bitvectorspecifyingwhetherSiintersectsT,foralli.Then,Bobcouldimmediatelyannouncetheanswer.Finally,itisessentialthatAliceonlyspeakinthebegin-ning.Otherwise,BoborCarmencouldannouncetheO(lgk)bitsofinputonAlice'sforehead,andAlicewouldimmedi-atelyannouncetheresult.Itiseasytoseethatastronglowerboundofthiscommuni-cationgamewouldimplyastrongversionofthemultiphaseconjecture:Observation8.Conjecture7impliesConjecture1.Thisholdseveninthestrongercell-probemodel,andevenifPhaseIisallowedunboundedtime.Proof.Weassumeasolutionforthemultiphasecon-jecture,andobtainacommunicationprotocol.AliceseesS1;:::;SkandT,andthuscansimulatetheactionsofPhaseIandPhaseII.Hermessagedescribesallcellswrittendur-ingPhaseII,includingtheiraddressesandcontents.ThistakesnM=O(nw)bits,wherewisthewordsize.Subsequently,Bobwillexecutetheactionsofthealgo-rithminPhaseIII.Foreverycellread,he rsttestswhetheritwasincludedinthemessagefromAlice.Ifnot,hecom-municatestheaddress(wbits)toCarmen.CarmenseesS1;:::;SkandcanthussimulatePhaseI.Therefore,sheknowsthatcontentsofallcellswrittenduringPhaseI,andcanreplytoBobwiththecontentsofallcellshewantstoread.Intotal,BobandCarmencommunicateM=O(w)bits.Assumingw=O(lgn),an (n)lowerboundonMimpliesan (n0)lowerboundon. Relationtoothercommunicationproblems.Theformu-lationofourcommunicationgameisinspiredbytheroundeliminationlemma[13,19].Inthistwo-playersetting,AlicereceivesS1;:::;SkandBobreceivesTandi2[k].Alicebe-ginsbysendingamessageofo(k)bits.Then,itispossibletoprovethatthemessagecanbeeliminated,while xingiinawaythatincreasestheerroroftheprotocolbyo(1).Theideaisthatthemessagecanbe xedapriori.AlicewillreceiveonlytherelevantSi,andshewillmanufactureS1;:::Si�1;Si+1;:::;Skinawaythatmakesthe xedmes-sagebecorrect.Thisispossiblewithprobability1�o(1),asthemessageonlycontainso(1)bitsofinformationaboutSi.Unfortunately,inour3-partysetting,theinitialmessageofo(k)bitsmaydependonboththeinputsofBobandCarmen.Thus,Carmencannot,byherself,manufactureavectorofSj's(j6=i)thatisconsistentwiththemessage.However,theinformationtheoreticintuitionofthelemmaholds,anditisconceivablethatthemessageofAlicecanbeeliminatedinablack-boxfashionforanycommunicationproblemoftheappropriatedirect-sumstructure:Conjecture9.Considera3-partynumber-on-foreheadgameinwhichAliceholdsi2[k],Bobholdsy1;:::;yk2Y,andCarmenholdsx2X.Thegoalistocomputef(x;yi),forsomearbitraryf:XY!f0;1g.IfthereisaprotocolinwhichAlicebeginswithaprivatemessagetoBobofo(k)bits,followedbyMbitsofbidirec-tionalcommunicationbetweenBobandCarmen,thenthe2-partycommunicationcomplexityoffisO(M).Ingeneral,number-on-foreheadcommunicationgamesareconsidereddiculttoanalyze.Inparticular,theasymmetricsetupinourproblemappearssimilartoa3-partycommuni-cationgameproposedbyValiant[22,14].AstrongenoughlowerboundonValiant'sgamewouldruleoutlinear-size,logarithmic-depthcircuitsforsomeexplicitproblems.For-tunately,ourgamemaybeeasiertoanalyze,sincewearesatis edwithmuchweakerbounds(inValiant'ssetting,evenan (n1�")lowerboundwouldnotsuce).2.USING3SUMHARDNESS2.1Convolution3SUMThe rstissuethatwemustovercomefore ectiveuseof3SUMhardnessisthefollowing\gap"intheproblem'scom-binatorialstructure:thetestx+y=zmustbeiteratedover�n3triples,yetthe(tight)lowerboundisonlyquadratic.Wede netheConvolution-3SUMproblemasfollows:givenanarrayA[1::n],determinewhetherthereexisti6=jwithA[i]+A[j]=A[i+j].Observethatthisproblemhasamuchmorerigidstructure,asthepredicateisonlyevalu-atedO(n2)times.AnotherwaytohighlighttheadditionalstructureistonotethatConvolution-3SUMobviouslyhasanO(n2)algorithm,whereasthisislessobviousfor3SUM.Theorem10.If3SUMrequires (n2=f(n))expectedtime,Convolution-3SUMrequires �n2=f2�nf(n)expectedtime.Inparticular,if3SUMrequiresn2�o(1)time,thensodoesConvolution-3SUM.Furthermore,if3SUMrequiresn=lgO(1)ntime,sodoesConvolution-3SUM.Asanimmediateappli-cationofthisresult,wementionthatpluggingitintothereductionfrom[23]to ndingagiven-weighttriangle,oneimmediatelyobtainsourimprovedboundfromTheorem4.Proof.Ourreductionfrom3SUMtoConvolution-3SUMisthe rstpointofdeparturefromalgebraicreductions:wewillusehashing.Conceptually,ourideaisfairlysimple.Assumethatwehadsomeinjectivehashmaph:S![n],whichislinearinthesenseh(x)+h(y)=h(z).Then,wecouldsimplyplaceevery3SUMelementx2SintothelocationA[h(x)].Ifthereexistx;y;z2Swithx+y=z,thenh(x)+h(y)=h(z)andthereforeA[h(x)]+A[h(y)]=A[h(x)+h(y)].Thus,thetriplewillbediscoveredbytheConvolution-3SUMalgorithm(nofalsenegatives).Ontheotherhand,thereareclearlynofalsepositives,sincethearrayAis lledwithelementsfromS,soanyA[i]+A[j]=A[k]isavalidanswerto3SUM.Unfortunately,wedonothavelinearperfecthashing.In-stead,weuseafamilyofhashfunctionsintroducedbyDi-etzfelbinger[8].Thehashfunctionisde nedbypickingarandomoddintegeraonwbits,wherewisthemachinewordsize.Toobtainvaluesinrangef0;:::;2s�1g,thehashfunctionmultipliesxbytherandomoddvaluea(modulo2w)andkeepsthehighordersbitsoftheresultasthehashcode.InCnotation,thewordxismappedto(unsigned)(a*x)��(w-s).Thisfunctionwasalsousedintheupperboundfor3SUM[2],wherethefollowingcrucialpropertieswereshown:almostlinearity:Foranyxandy,eitherh(x)+h(y)=h(x+y)(mod2s),orh(x)+h(y)+1=h(x+y) Asnotedabove,theexpectednumberoffalsepositivesisO(n2=R).EachonewillhaveacostofO(n=R),givenbytheexhaustivesearchinlines7-8.Thus,therunningtimeofthealgorithm,excludingtheintersectionsinline5,isO(nR+n3 R2)inexpectation.SinceR=!(p nf(n))andR=o(n=f(n)),thistimeiso(n2=f(n)).However,weassumedtheConvolution-3SUMrequirestime (n2=f(n)),implyingthatthetotalcostoftheintersectionoperationsinline6mustbe (n2=f(n)).Wenowimplementtheseintersectionsintermsof ndingtrianglesinatripartitegraph,obtainingthedesiredreduc-tion.Thegoalistogetridoftheset-shiftoperationsinlines4-5.Weaccomplishthisbybreakingashiftbysomei2[n]intoashiftbyimodp n,andashiftbybi p ncp n.Formally,letthepartsinourgraphbeA=B=[R][p n],andC=[n].Weinterpretanelement(x;i)2AasthesetB(x)�i.TheedgesfromAtoCrepresenttheelementsofthesesets:anedgeexistsfrom(x;i)tosomej2Bi j2B(x)�i.Anelement(x;i)2BisinterpretedasthesetB(x)+ip n.TheedgesfromBtoCrepresenttheelementsofthesesets:anedgeexistsfrom(x;i)toj2Bi j2B(x)+ip n.Finally,theedgesfromAtoBrepresentthe2nRin-tersectionquestionsthatweaskinline6.ToaskwhetherB(y)intersectsB(x+y)�i,weaskwhetherB(y)+bi p ncp nintersectsB(x+y)�imodp n.Foreachtrianglereported,weruntheexhaustivesearchinlines7-8.WeexpectO(n2=R)triangles.Ifthisexpectationisexceededbyaconstant(thetrianglereportingalgorithmreportstoomanyelements),werehash. 2.3ReductiontotheMultiphaseProblemInthis nalstep,wereducetrianglereportingtothemulti-phaseproblem.CombinedwithTheorem10andLemma11,thisestablishesthereductionfrom3SUMtothemultiphaseproblemclaimedinTheorem3.Inthebeginning,wetakeedgesfromAtoC,andcon-structk=Rp nsetsindicatingtheneighborsofeachvertexfromA.ThesearethesetsgiveninPhaseI.WethenrunRp ncopiesofPhaseII.Eachcopycorre-spondstoavertexofB,andthesetTrepresentstheneigh-borsofthevertexinC.EachexecutionofPhaseIIstartswiththememorystateafterPhaseI.Anycellswrittendur-ingPhaseIIaresavedinaseparatehashtableforeachexecution.Finally,werunaquery(PhaseIII)foreachoftheO(nR)edgesbetweenAandB.Foreachsuchedge,weneedtotesttheintersectionoftheneighborhoodofavertexfromAwiththeneighborhoodofavertexfromB.ThisisdonebyrunningaPhaseIIIwiththeindexoftheAvertex,ontopofthePhaseIImemorystatecorrespondingtotheBvertex.ByLemma11,weonlyneedtodealwithO(n2=R)trian-glesinthegraph.WheneversomePhaseIIIqueryreturnsanintersection,weenumeratethetwosetsofO(n=R)sizeand ndtheintersection(andthus,atriangle).ThetotalrunningtimeofthissearchisO(n3=R2)=o(n2=f(n)).Thus,therunningtimemustbedominatedbythemul-tiphaseproblem,andweobtainan (n2=f(n))boundforrunningPhaseI,O(Rp n)copiesofPhaseII,andO(nR)copiesofPhaseIII.The nalobstacleistheuniverseofthesetsinthemul-tiphaseproblem.SincetherunningtimeisassumedtobeO(U),whereeachsetcomesfromtheuniverse[U],weneedtodecreasetheuniversefromthecurrentU=ntogetasuperconstantlowerbound.Noticethatoursetsareverysparse,eachhavingO(n=R)values.ThissuggeststhatweshouldhasheachsetbyauniversalfunctiontoauniverseofU=c(n R)2,forlargeenoughconstantc.Byuniversalityofthehashfunction,iftwosetsaredis-joint,afalseintersectionisintroducedwithsmallconstantprobability.WerepeattheconstructionwithO(lgn)hashfunctionschosenindependently.Weonlyperformtheex-haustivesearchifaqueryreturnstrueinalltheO(lgn)instances.Thismeansthattheexpectednumberoffalsepositivesonlyincreasesbyo(1),sotheanalysisoftherun-ningtimeisunchanged.ThetotalrunningtimeofeachoftheO(lgn)instancesisgivenby:PhaseI,takingtimeO(kU)=O(Rp nn2 R2)=O(n2:5=R).O(Rp n)executionsofPhaseII,takingtimeRp nO(U)=O(n2:5=R).O(nR)executionsofPhaseIII,takingtimeO(nR).TobalancethecostsofO(n2:5=R)andO(nR),wesetR=n0:75,whichisintherangepermittedbyLemma11.Thisgivesalowerboundofn0:25�o(1).TorephrasetheboundinthelanguageofTheorem3,observethatk=Rp n=n1:25andN=O(n2=R2)=O(p n).Thus,k=O(N2:5),andN0:5�o(1).3.REFERENCES[1]N.AilonandB.Chazelle.Lowerboundsforlineardegeneracytesting.InProc.36thACMSymposiumonTheoryofComputing(STOC),pages554{560,2004.[2]I.Baran,E.D.Demaine,andM.Patrascu.Subquadraticalgorithmsfor3SUM.Algorithmica,50(4):584{596,2008.SeealsoWADS2005.[3]G.BarequetandS.Har-Peled.Polygon-containmentandtranslationalmin-Hausdor -distancebetweensegmentsetsare3SUM-hard.InProc.10thACM/SIAMSymposiumonDiscreteAlgorithms(SODA),page862^aAS863,1999.[4]T.M.Chan.Dynamicsubgraphconnectivitywithgeometricapplications.InProc.34thACMSymposiumonTheoryofComputing(STOC),pages7{13,2002.[5]T.M.Chan,M.Patrascu,andL.Roditty.Dynamicconnectivity:Connectingtonetworksandgeometry.InProc.49thIEEESymposiumonFoundationsofComputerScience(FOCS),pages95{104,2008.[6]C.DemetrescuandG.F.Italiano.Anewapproachtodynamicallpairsshortestpaths.JournaloftheACM,51(6):968{992,2004.SeealsoSTOC'03.[7]C.DemetrescuandG.F.Italiano.Trade-o sforfullydynamictransitiveclosureonDAGs:breakingthroughtheO(n2)barrier.JournaloftheACM,52(2):147{156,2005.SeealsoFOCS'00.[8]M.Dietzfelbinger.Universalhashingandk-wiseindependentrandomvariablesviaintegerarithmeticwithoutprimes.InProc.13thSymposiumonTheoreticalAspectsofComputerScience(STACS),pages569{580,1996.