/
A Rigorous Method for Synthesis of Oset Shaped Reector Antennas Vladimir I A Rigorous Method for Synthesis of Oset Shaped Reector Antennas Vladimir I

A Rigorous Method for Synthesis of Oset Shaped Reector Antennas Vladimir I - PDF document

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
481 views
Uploaded On 2014-12-21

A Rigorous Method for Synthesis of Oset Shaped Reector Antennas Vladimir I - PPT Presentation

Oliker Department of Mathematics and Computer Science Emory University Atlanta Georgia email olikermathcsemoryedu Abstract In this paper the problem of synthesis of o64256set shaped single re64258ector antenna is considered This problem has to be so ID: 27250

Oliker Department Mathematics

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "A Rigorous Method for Synthesis of Oset ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ARigorousMethodforSynthesisofO setShapedRe\rectorAntennasVladimirI.OlikerDepartmentofMathematicsandComputerScience,EmoryUniversity,Atlanta,Georgiae-mail:oliker@mathcs.emory.eduAbstractInthispapertheproblemofsynthesisofo setshapedsinglere\rectorantennaisconsidered.Thisproblemhastobesolvedwhenare\rectorantennasystemisrequiredtocontrolthe eldamplitudeand/orphaseonthefar- eldorontheoutputapertureinthenear- eld.Achievinghigheciencyisaveryimportantobjectiveofthedesignandshapedre\rectorantennasareusedforthatpurpose.Theequationsoftheproblemarestronglynonlinearpartialdi erentialequationswhichcannotbeanalyzedbystandardtechniques.Thoughtheproblemhasbeenthesubjectofstudybymanyauthorsforover40years,upuntilrecently,therewerenorigoroustheoreticalresultsresolvingcompletelythequestionsofexistenceandunique-ness.Withfewexceptions,authorshaveattackedtheproblemwithheuristicnumericalprocedures,and,dependingonthespeci cformulation,obtaineddi erentresultsnotalwaysinagreementwitheachother.Inthispaperanewmethodforsolvingthesinglere\rectorproblemispresented.Thenewmethodallowsacompleteandmathematicallyrigorousinvestigationofthisproblem.Furthermore,theproposedmethodlendsitselftoanumericalimplementationandwepresenthereseveralexamples.Keywords:re\rectorantenna,synthesis,nonlinearpartialdi erentialequations,numericsSubjectClassi cation:AMS(MOS):78A50,65N21;CR:G1.8. Author'snote:ThispaperwassubmittedforpublicationtotheJournalofComputationalMethodsinSciencesandEngineering(JCMSE)onAugust12,2001andacceptedDecember12,2001.However,duetoreasonsrelatedtopublishingissuesandcompletelybeyondanycontroloftheauthorthepaperhasneverbeenpublished.ItwastransmittedtoComputedLettersonMarch17,2006.1 1IntroductionRe\rectingpropertiesofquadricsurfaces,suchasellipsoids,paraboloidsandhyperboloidsarewellknownandhavebeenwidelyusedtobuildlenses,mirrors,antennas,andmanyotherre-\rectingandrefractingdevices.However,inmanyengineeringproblemsofre\rector/refractordesignandanalysisthesimpleshapesofquadricsurfacesareoftennotsucienttosatisfytherequirementsofhigheciencyandsigni cantlymorecomplexsystemsofsurfaceshavetobedesignedandmanufactured.Ageneralproblemthatarisesinthetheoryofsynthesisofre\rectorantennasisthatofshapingare\rectingsurfacesothatitwouldredistributeagivengeometricaloptics(GO)feedpowerpatternintoaprespeci edamplitudeaperturedistribution[2],[3],[1],[4],[5]Restrictingthedesigntoaxiallysymmetricsurfacesorcom-binationsofellipsoids,paraboloidsandhyperboloidswillproduceinmanycasesasystemwithblockageandloweciency.Variousversionsofthisproblemarisealsointhetheoryofsynthesisofmirrorsinoptics[9],[8],[10],[11],[12],heattransfer[6],[7],andotherareas.Becauseofimportantpracticalapplications,thisproblemhasbeenstudiedquiteex-tensively.Intheaxiallysymmetriccasewiththesourceontheaxistheproblemreducestosolvinganordinarydi erentialequationwhichcanberigorouslyinvestigatedandsolvednumericallywithanygivenprecision[5].Obviously,anaxiallysymmetricdesignistoore-strictive.Forexample,blockageofthere\rectorbythefeedcannotbeavoidedinsuchdesign.Thus,inmanycircumstancesanon-axiallysymmetricando setre\rectorantennasaredesired.However,inthiscasetheequationsdescribingtheproblemarehighlynonlin-earpartialdi erentialequationswhichuntilrecentlycouldnotbeanalyzedrigorouslybyavailablemathematicalmethods.Duringthelastfourdecadesessentiallythreedi erentapproacheshavebeenusedforformulatingthegeneralproblemanalyticallyandsolvingitnumerically.Inthe rstapproachtheproblemisformulatedasasystemof rstorderpartialdi erentialequationsandamethodresemblingthemethodofcharacteristicsisappliedtosolvethesystemnumerically;see[2,1],andotherreferencesthere.Inthesecondapproachthesameproblemisformulatedasaboundaryvalueproblemforasecondorderpartialdi erentialequationofMonge-Amperetypeforacertaincomplex-valuedfunction[4].Thenalinearizationprocedureisusedtoconstructasolutionclosetosomeaprioriselectedsolution.Inbothapproachesarigorousmathematicalanalysisoftheresultingequationsislackingandconsequentlythevalidityofthenumericsisneverfullyestablished.Thisledtoacontroversyregardingexistenceanduniquenessofsolutionsthatuntilnowhasnotbeenresolved[3,2,1].Athirdapproachbasedonarigorousmathematicalanalysisofasecondorderreal-valuedMonge-Ampereequationwasappliedin[13]toproveexistenceanduniquenessinthespecialcasewhenthesolutionisrequiredtobe\close"toanaxially-symmetricone.2 Thepurposeofthispaperistodescribeanewapproachtothesynthesisproblemforsinglere\rectorantennas.Incontrastwiththeabovementioned rsttwoapproachesthenewapproachisbasedonarigorousmathematicaltheoryanditsvaliditydoesnotdependonspeci cnumericalexamples.Italsodoesnothavethelimitationspresentinthethirdapproach.Theapproachpresentedherewas rstdevelopedin[14]forthefar- eldcase,andthen,forthenear- eldcase,in[15,16].Asomewhatdi erentbutclose\inspirit"approachtosynthesisofdualre\rectorsystemswithacollimatedsourceisdescribedin[17].Note.(AddedinproofMay10,2006).Analternativeapproachtotheproblemofdesigningopticalandantennasystemsconsistingofoneortwore\rectingsurfaceswhichtransformtheenergyofthesourceintoaprescribedenergydistributiononagiventargetsetwasgivenbyT.GlimmandV.Olikerin[22,23].Thisapproachisbasedoncalculusofvariations,inparticular,ontheMonge-Kantorovichtransporttheory.In[14,15,16]theemphasiswasonthemathematicalaspectsoftheproblemsandtheresultsarenotreadilyapplicabletoproblemsofpracticalinterests.Thepresentpaperemphasizesthegeometricsideofthenewapproachand,inadditiontoprovidingarelativelyelementaryexpositionofit,containsalsoanimportantimprovementandanalysisleadingtopracticalcriteriapermittingdesignswithnoblockage.Thepresentedapproachallowstonotonlyresolverigorouslythequestionsofexistenceanduniquenessofsolutionsbutitalsolendsitselfnaturallytonumericalproceduresforconstructingnumericalsolutionswithanyuser-speci edaccuracy.Suchaprocedurehasbeenimplementedbyusintoanumericalcodeandweusedittodevelopo setshapedre\rectorantennastransformingagivenGOfeedpowerpatternintoaprespeci edamplitudedistributionacrossagiven\rataperture.Inessence,thenewapproachisverygeometricandquiteelementary.Whilethemathematicsbehinditissomewhatinvolvedandusesrelativelyadvancedconceptsofweaksolutionstononlinearpartialdi erentialequations,themainideasaretransparentandcanbeexplainedbysimpleandfamiliarmeans.Theorganizationofthispaperisasfollows.Insection2wegiveadetailedstatementoftheproblem,insections3and4wedescribethenewapproachtoitssolution,in5weprovideconditionswhichguaranteethatself-blockageandblockagebythefeedareavoided.Finally,insection6wepresentnumericalexamples.3 2StatementoftheProblemLetx;y;zbeaCartesiancoordinatesystemwithoriginO.WedenotealsobyOanon-isotropicpointsourceofenergyplacedattheoriginandletI(m)denotethefeedpowerpatternasafunctionofdirectionm.Asusual,thegeometricalopticsapproximationisusedtosetupthesynthesisproblem[5,11,4,1]. x y z T O m n R r(m) S D u t r = |r(m)| v = r + tu Figure1:FormulationoftheproblemItisconvenienttoconsiderthedirectionmasapointonaunitsphereScenteredatOasshownontheFig.1.Inthissetting,mistheincidencedirectionpassingthroughtheinputaperturewhichispicturedasaregiononthesphereS.WewillassumethatisaclosedsetonSinthesenseofsettheory.Inordertoderivetherequiredrelationsweconsiderare\rectorsurfaceRthatinterceptstheincidentraysandre\rectsthemaccordingtoSnell'slaw.ThesurfaceRisrepresentedbyitspolarradius(m)withmvaryinginregion.Invectorformitisgivenbyr(m)=(m)m.TherayofdirectionmisincidentuponthesurfaceRatthepointr(m)andisre\rectedindirectionugivenaccordingtoSnell'slawasu=m2(mn)n;(1)wherenistheunitnormaltosurfaceR.ItisassumedherethatRissmoothandprojectsradiallyontoinaone-to-onefashion.IntheproblemconsideredherewearealsogiveninadvancesomeregionTinspacewhichthere\rectedraysmustreachandproducethereacertainpowerpattern.Forsimplicity,4 theenergydeliveredbyraysreachingTdirectlyfromOisexcludedfromouranalysis.Obviously,thisenergycanbeeasilyaccountedforinthe nalanalysis.InthispaperweassumethatTisa\ratregiononsomeplane.Thisassumptionismadeonlytosimplifythepresentation;itcanbesigni cantlyrelaxed[15].ItisalsoassumedthatTisaboundedandclosedset.WedenotebyL(v)afunctionde nedonTwhichrepresentstherequiredoutputpowerpattern.Finally,ifwedenotebyt(m)thedistancefromthesurfaceRtraveledbythere\rectedrayofdirectionu(m)toreachT,thenwehaveamap(m):!TfromtheinputaperturetotheregionT,thatis,v=(m).Thismapisgivenby(m)=r(m)+t(m)u(m):(2)Next,werelatetheinputpowerpatternI(m)onandtheoutputpowerpatternL(v)onT.LetJ()betheJacobianofthemap.Theenergyconservationlawalongin nitesimalraytubescanbeexpressedas[18]L((m))jJ((m))j=I(m):(3)Now,there\rectorproblemisformulatedasthefollowinginverseproblem.SupposewearegiveninadvancetheregiononSanda\ratregionTonsomeplane,anon-negativefunctionI(m)de nedonandanon-negativefunctionL(v)de nedonT.Theproblemistodetermineare\rectingsurfaceRsuchthatthemap,de nedby(2),mapsontoTandthecondition(3)issatis edforallmintheinteriorof.Anecessaryconditionthatmustbesatis edbythefunctionsIandLfollowsimme-diatelyfrom(3).Namely,integrating(3)andusingtheformulaforchangingthevariableunderintegralweobtainZDI(m)d(m)=ZDL(\r(m))jJ(\r(m))jd(m)=ZTL(v)d(v);whered(m)istheareaelementonthesphereSandd(v)istheareaelementonT.ItfollowsthatifL(v)isagivenoutputpowerpatternontheoutputapertureTthenthefollowing\balance"equationisnecessaryforsolvabilityofthere\rectorproblem:ZDI(m)d(m)=ZTL(v)d(v):(4)Fromthepointofviewofdi erentialequationstheequations(1),(2)and(3)arenotconvenientforstudyingthere\rectorproblembecausethepositionvectoroftheunknownre\rectorRenterstheseequationsinaverycomplicatedway.Di erentwaysforrewritingtheseequationshavebeensuggested[2,3,4,5,11,19,20].Someofthemaremoreconvenientthanotherbut,exceptfortheaxiallysymmetriccase,theresultingequationsarealwayshighlynonlinearandcomplicated,and,consequently,diculttoinvestigate.Fortunately,inourapproachwedonotneedtheseequationsinexplicitform.5 3TheNewApproach3.1AnObservationandtheMainStrategyInsomesensetheapproachdescribedbelowresemblestheclassicalapproachinwhichonewouldliketousetheknownre\rectingpropertiesofquadricstobuildre\rectors.Consider rstthespecialcasewhentheoutputapertureTconsistsofonlyonepointv.TherequiredoutputpowerisinterpretedinthiscaseastheDiracfunctionwithapositive\mass"Lvconcentratedatthepointv.Sincetherighthandsideinthebalanceequation(4)isthetotalenergyrequiredatv,thisequationinthiscaseassumestheformZDI(m)d(m)=Lv:(5)Inthefollowingourconstructionswillinvolveellipsoids.Toavoidconfusion,letusnotethatthroughoutthepaperbyanellipsoidwealwaysmeanthesurfaceofthesolid.LetE(v)beanellipsoidofrevolutionwiththeaxisofrevolutionpassingthroughthepointsOandv,withoneofthefociatOandtheotheratv.Itspolarradiusisgivenby(m)=d 1m^v;(6)wheredisthefocalparameterofE(v),theeccentricity,and^v=v jvj:HereandthroughoutthepaperweidentifythepointvwiththevectororiginatingatOandterminatingatv.SincethedistancejOvj(=jvj)betweenthefociisspeci ed, xingapositived xesonesuchellipsoid.TheeccentricityofE(v)canthenbedeterminedfromtheknownformulajvj=2d 12;(7)whichcanberesolvedas=vuut 1+d2 jvj2d jvj:(8)Thewellknowngeometricpropertiesofsuchanellipsoidimplythatanyrayofdirec-tionmoriginatingatOisre\rectedbyE(v)andreachesvwhichisacausticpointofthisGO\row.ThetotalpowerofthesourceZDI(m)d(m)6 iscarriedtothefocusvbytheGOrayspassingthroughtheapertureandtransformedbyE(v).By(5)ZDI(m)d(m)=Lv:Thus,inthisspecialcasethepieceoftheellipsoidE(v)thatprojectsradiallyontoisasolutionofthere\rectorproblem.Uniqueness.ItisclearthatanyellipsoidofrevolutionwiththesamefociOandvisalsoasolutioninthiscase.However,asitfollowsfrom(6)and(8),therelationbetweenpolarradiiofanytwosuchsolutionsisnotlinear.Inparticular,thetwosolutionsarenotrelatedbyahomothetyrelativetoO.Thus,weseethatinthiscasethere\rectorproblemhasin nitelymanygeometricallydistinctsolutions.3.2Re\rectorsDe nedbyaFiniteNumberofEllipsoidsConsidernowamoregeneralcasewhenthesetTconsistsofa nitenumberofpointsandtheoutputpowerpatternrequiredonTisacollectionofmassesconcentratedatthesepoints.Inthiscase,ourplanistoconstructthere\rectorsurfacefrompiecesofconfocalellipsoidsofrevolutionwiththecommonfocusatOandaxeswithdirectionsde nedbythepointsinT.Morespeci cally,letTbegivenasa nitesetofpoints,T=fv1;:::;vNg,andtherequiredoutputpowerpatternonTisgivenasasumLT=NXi=1Li(vi);whereLiarepositivenumbersequaltotheoutputpowersrequiredatpointsvi.ThefunctionLTshouldbeunderstoodhereinthedistributionalsense,thatis,whenappliedtoaunitprobeatthepointvi,itproducesthepowerLi.Similarly,therighthandsideofthebalanceequation(4)shouldbeunderstoodinthiscaseasthetotalpowerQ=PNi=1LiandweassumethatthenumbersLiaresuchthatthefollowingbalanceequationissatis ed:ZDI(m)d(m)=Q:(9)Ultimately,there\rectorsurfaceRinthiscasewillbebuiltofpiecesofconfocalellipsoidsofrevolutionE(vi)withthecommonfocusatOandaxesofrevolutionalongOvi;i=1;:::;N.However,theconstructionofsuchare\rectorinthiscaseisabitmoreinvolvedthanbeforeandweneedtointroduceprecisede nitions.TosimplifythenotationweputEiE(vi).ThepolarradiusofEiisgivenbyi(m)=di 1i(m^vi);(10)7 wheredi�0andi,0i1,are,respectively,thefocalparameterandeccentricityofEi,whilemisanarbitrarypointonthesphereS.ThesolidbodyboundedbyEiisdenotedbyBi.Next,weconsidertheintersectionofthebodiesBiandputB=N\i=1Bi:SinceeachofBiisaconvexbody,thesetBisalsoconvex.ThefocalparametersoftheellipsoidsEicanbeselectedsothatthepointsviliestrictlyinsideBforalli.Inordertoestablishthiswe rstnotethatby(10)wehaveforallmonSi(m)&#x-1.2;虔di=2:(11)Theinequalityin(11)isstrictbecause0i1.Theinequality(11)meansthataballofradiusdi=2withthecenteratO tsstrictlyinsideEi.BecauseofthesymmetryofEiaballofthesameradiusbutwiththecenteratthesecondfocusviisalsocontainedinsideEi.Let!(T)denotethediameterofthesetT,thatis,themaximaldistancebetweenanytwopointsinT.Ifwechoosedi2!(12)foralli=1;:::;Nthaneachoftheellipsoidsde nedbydiwillcontainthesetTstrictlyinside.Therefore,thesolidBand,ofcourse,thesurfaceboundingitwillalsocontainsTstrictlyinside.Becausetherequiredre\rectorwillbeconstructedasapartoftheboundaryofthesolidB,theabovepropertywillbeimportantforestablishingthatnopartofthere\rectorconstitutesablockagetore\rectedrays(priortoreachingthepointsvioftheoutputaperture).Nowwecanstatetheprecisede nitionofare\rector.De nition1TheconvexsurfaceboundingthesolidBiscalledare\rectorde nedbytheellipsoidsE1;;EN.Obviously,anyfamilyofellipsoidsEi,i=1;:::;N,de nesare\rectorredirectingtheraysfromthesourceOtotheirrespectivefocivi.However,theamountofenergydeliveredateachofthevidependsonhowmuchofthetotalenergyfromOis\intercepted"bythecorrespondingellipsoidpriortootherellipsoidsinthefamily.Thus,themainproblemistoselecttheellipsoidsEisothatforeachi=1;:::;NtheenergyarrivingatviisequaltoLi.Aswewillseeinthefollowingsections,thisisaccomplishedbysolvingasystemofequationsfortherequiredfocalparameters.8 E 1 E 2 O v 1 v 2 A C B 1 B 2 Figure2:Thegeometryofthere\rectorin2D3.2.1ASpecial2DCaseLetusexplainthemainideaforconstructingthere\rectorinthesimpleplanarcaseshownonFig.2.Inthis gureE1andE2aretwoellipseswithacommonfocusOandTconsistsoftwopointsv1andv2.ThelatterarealsothesecondfociofE1andE2,respectively.Itfollowsfromde nition1thatthere\rectorinthiscaseistheclosedarcAB1CB2A.Denotethisre\rectorbyR.NotethateveryrayemanatingfromOandre\rectingo Rpasseseitherthroughv1orv2.TheinputapertureistheangleB1OB2.ItisconvenienttoassumethattheinputapertureisextendedtotheentireunitcirclecenteredatO.InordertoaccountforsuchapertureextensionweassumethatoutsideoftheactualinputapertureB1OB2thefeedpowerdensityiszero.Then,onlytheraysintheangleB1OB2areofinterest.Ifthesumofpowersrequiredatv1andv2isequaltothetotalinputpower(thatis,theequation(9)appliedtothiscaseissatis ed),thenthecontributionofeachoftheellipsestothepoweratthecorrespondingfocusdependsonhowmuchofthetotalinputpowerisinterceptedandredirectedbythecorrespondingellipse.This,ontheotherhand,canbecontrolledbytheappropriatechoiceofthefocalparameters.Forexample,ifthefocalparameterofE2issolargethatE1isstrictlyinsidethesetboundedbyE2thenalltheraysfromOareinterceptedbyE1.Inthiscase,thereisnopowercontributiontov2andallpowergoestov1.Similarly,ifthefocalparameterofE2issucientlysmallthenE2willinterceptalltheraysfromOandallpowerwillbedeliveredtov2.Intheformercase,keepingthefocalparameterofE1 xedanddecreasingthefocalparameterofE2wecanachieveanydesireddistributionofthetotalpowerbetweenthepointsv1andv2.Oncethedesireddistributionisachieved,thepartofthere\rectoroutsidethearcB1AB2isdeleted.Suchdeletiondoesnota ecttheattainedenergydistribution,sincetheinputpowerdensityfordirectionsoutsidetheangleB1OB2iszero.Then,the9 remainingpartofthere\rectorcontainedintheangleB1OB2givestherequiredre\rector.3.2.2ConstructingRe\rectorsWithEllipsoidsWenowusethesameideatobuildare\rectorin3Dincasewhenthenumberofellipsoidsde ningthere\rectormaybearbitrary(but nite).Wewillseelaterthatthisistheimportantcaseinpractice.Inordertodescribetherequiredconstructionweneedtointroducetworelatednotions.Firstofall,itisconvenienttoassumethatthefeedpowerpatternI(m)isde nedovertheentiresphereSbysettingI(m)0outside.ThenwecanworkwiththeentiresphereSastheinputaperture.Theresultingre\rectorwillbeaclosedsurface.Oncethisre\rectorisconstructedwewilldeletetheunnecessarypartandobtaintherequiredre\rector.LetT=fv1;:::;vNgandletEi;i=1;:::;N,beafamilyofellipsoidsde ningthere\rectorRasinde nition1.LetEjbeoneoftheellipsoidsofthefamily.Byde nition,thesolidB(vj)mustcontainthere\rectorR.Weneedtodistinguishthecaseswhenthere\rectorRislyingstrictlyinsideB(vj)andwhensuchinclusionisnotstrict,thatis,whenEjandRhavecommonpoints.De nition2WesaythatEjissupportingtoRifthesetCj=EjTRisnotempty.ThesetCjiscalledthe\contact"setofEjwithR.Thisde nitionisillustratedinthe2DcaseonFig.3.Inthis gure,allthreeellipsesE3aresupporting.However,ifthefocalradiusd3ofE3isincreasedtheellipseE3ceasestobesupportingandC3becomesempty.Weneedtoallowforthatbecausewhenweconstructare\rectorwedonotknowaprioriifaparticularellipsoidfromagivenfamilyconstitutesapartofthere\rectorornot.Nowwede neasetthatdeterminesthecontributionofeachellipsoidtotheoutputpowerpattern.De nition3LetRbeare\rectorasaboveandE(v)anellipsoidfromthefamilyde ningR.DenotebyV(v)theradialprojectionofC(v)onSbyraysfromO.Thissetiscalledthevisibilitysetofv.ThisnotionisillustratedonFig.4.PutG(R;v)=ZV(v)I(m)d(m):10 E 1 E 2 O v 1 v 2 A C B 1 B 2 E 3 v 3 Figure3:Supportingellipses E 1 E 2 v 1 v 2 V(v ) 2 V(v ) 1 S Figure4:VisibilitysetsEvidently,thevisibilitysetV(v)consistsofdirectionsmofallraysemittedfromOwhicharere\rectedbyRandreachv.Therefore,thequantityG(R;v)givesthetotalpowerdeliveredbyre\rectorRtothepointv.Note,thatbecauseofthewaywerede nedI(m)overS,onlythecontributiontothisintegralfromthesetTV(v)playsarole.Also,notethatifC(v)isemptythenV(v)isempty,andG(R;v)=0.Now,there\rectorproblemwiththeoutputapertureconsistingofa nitenumberofpointscanbeformulatedasfollows.LetT=fv1;:::;vNgandL1;:::;LNarepositivenumberssuchthatthebalancecondition(9)issatis ed.Theproblemistodetermineare\rectorRde nedbyellipsoidsEiwithfociatOandvi;i=1;2;:::;N;suchthatG(R;vi)=Liforeachi=1;2;:::;N:(13)SinceeachoftheellipsoidsEiisuniquelyde nedbyitsfocalparameterdi,thedeterminationofthere\rectorRmeansdeterminingNfocalparametersd1;:::;dNsothatthecorrespondingre\rectorsatis es(13).11 Thesystem(13)isanonlinearsystemwithrespecttothevariablesd1;:::;dNandinthenextsectionwedescribeaprocedureforsolvingit.3.2.3TheAlgorithmforSolvingSystem(13)Thesystem(13)issolvedbyaniterativeprocedurestartingwithaninitialre\rectorR0.There\rectorR0isconstructedfromthedata.We rstdescribethisconstruction.LetRbesomere\rectorde nedbyellipsoidsEi;i=1;:::;N,withoneofthefociatOandtheotheratv1;:::;vN,respectively.WewanttoshowthatthefocalparametersofEicanbeselectedsothatforallminandalli�1wehave1(m)i(m):(14)ThisinequalityimpliesthatalltheenergyfromthesourceOisredirectedbythere\rectortothepointv1.Welet,asbefore,M=maxijvijand!=diameterofT.Naturally,itisalwaysassumedthatthesetTisatapositivedistancefromO,andthusminijvij�0.Letalso\ri=maxDm^viand\r=maxi\ri.Also,itisassumedthattheraysfromthesourcepassingthroughtheinputapertureareseparatedfromtheraysfromthesourcedirectedtowardspointsontheoutputaperture,thatis,\r1:(15)Putd1= M;(16)where isapositivenumberwhichisadesignparameterwhosespeci cchoicewillbediscussedinsection3.2.4.Then,using(7),weobtain21 121=jv1j d11 and1p 1+ 2 :Itfollowsfrom(10)thatforthepolarradiusoftheellipsoidE1overtheinputaperturewehavetheestimate1(m)=d1 11m^v1 M 1(p 1+ 2 )\r1;(17)thatis,theinequality(14)issatis ed.12 Put =2 1(p 1+ 2 )\r1anddi= M:Thenforpointsmindomainweobtain,using(10)and(17),i(m)=di 1im^vidi 2= M 2= M 1(p 1+ 2 )\r11(m):(18)LetR0denotethere\rectorconstructedwithellipsoidsE1;:::;EN.Becauseof(18)theraysfromOthroughareallintercepted rstbyE1.Usingthenotationintroducedearlier,andtheassumption(9),wecanexpressthisfactasG(R0;v1)=ZSI(m)d(m)=Q;G(R0;vi)=0;fori�1:Theconstructionoftheinitialre\rectorisnowcomplete.Wenowbeginmodifyingthere\rectorR0.InthisprocessonlythefocalparametersofellipsoidsEi;i�1;willbechanging,whileE1willremain xed.WebeginwithE2.Decreasecontinuouslythefocalparameterd2andconsiderthere\rectorsde nedbythesameellipsoidsasbeforeexceptforE2whichisreplacedbytheellipsoidwithreducedfocalparameterd2.The\intermediate"re\rectorsaredenotedbyR0int.Theparameterd2isdecreaseduntiltheequalityG(R0int;v2)=L2isachieved.ThismusthappenbecauseG(R0int;v2)changescontinuouslywithd2onthesegment[0;Q].ThecontinuityofG(R0int;v2)followsfromthefactthatitdependscontinuouslyonthevisibilitysetV(v2)andthelatterincreasescontinuouslyasd2decreases.Moreprecisely,ifintheinitialpositiontheellipsoidE2issupportingthenV(v2)willincreasewhend2isdecreased.IfE2isnotsupportingattheinitialstagethenV(v2)isemptyuntilE2becomessupporting(whend2becomessucientlysmall).Inaddition,ifd2isnearzerothentheellipsoidE2isinterceptingalltheraysfromOthroughandthecorrespondingvisibilitysetV(v2)=S.ThenG(R0int;V(v2))=ZSI(m)d(m)=Q:Thelatterisimpossible,sincebyconstructiond2wasdecreasingonlywhileG(R0int;v2)L2.LetusshowthattheequalityG(R0int;v2)=L2isattainedwhiled2�d1(1\r)=2:(19)ThisestimateisrequiredinordertoshowthattheellipsoidE2duringtheabovemodi cation(andthesubsequentonestobedescribedbelow)doesnotdegenerateintoastraightlinesegmentjoiningOandv2.ToestablishtherequiredpropertyassumethatforsomeintermediatepositionofE2wehaved2=d1(1\r)=2.(Sinceintheinitialpositiond22d1andd2ischanging13 continuously,itisclearthatif(19)isnottruethend2=d1(1\r)=2mustholdforsomecon gurationofellipsoidsforminganintermediatere\rector.)Thenforpointsminwehave2(m)=d1(1\r) 2(12m^v2)d1(1\r) 2(12\r2)d1(1\r) 2(1\r2)d1 2:Ontheotherhand,itfollowsfrom(10)that1(m)d1 2:Therefore,forpointsmin2(m)1(m):ThenwemusthaveG(R0int;v2)=ZSI(m)d(m)=Q�L2;whichisincontradictionwiththewayE2wasmodi ed.Theestimate(19)isestablished.We xthevalued2forwhichG(R0int;v2)=L2andthecorrespondingellipsoidE2.IfN=2thenwearedone;otherwise,thesameprocedureisrepeatedforeachoftheremainingellipsoidsfori�2(itisassumedthatN2;thecasewhenN=1wasdescribedinsection3.1).Theresultingre\rectorwedenotebyR1.ItisclearthatiftheellipsoidEiissupportingandthefocalparameterdiisdecreasingthentheenergyG(R0int;vi)isincreasingwhileG(R0int;vj)arenon-increasingforallj=i.Thatis,theintermediatere\rectorsR0intandR1satisfytheinequalitiesG(R1;v1)L1;G(R1;vi)Li;fori�1;andNXi=1G(R1;vi)=NXi=1Li=ZSI(m)d(m):IfG(R1;vi)=Liforeachi=1;2;:::;N;theprocessterminates.Otherwise,itcontinuesbyresettingR0=R1andrepeatingtheabovesteps.Asaresult,asequenceofre\rectorsRk;k=0;1;:::;withfocalparametersdk1;:::;dkNisconstructed.Foreachi�1dkidk+1i:(20)Intheterminologyofpartialdi erentialequationsthere\rectorsRkaresupersolutionsofthesystem(13).Theestimate(19)holdsforanydide ningellipsoidEkifori�1andanyre\rectorRk.Themonotonicity(20)ofthefocalparametersimpliesthatthesequenceofre\rectorsRkconvergestosomere\rectorRandbecauseoftheestimate(19),appliedtoeachoftheelementsofthesequencesdki,noneoftheellipsoidsEkidegeneratesintoastraightlinesegment.Ifwedenotebyd1;:::;dNthefocalparametersoftheellipsoidsformingRthenbyconstructionwehavedidki;foralli1andallk=0;1;2;:::(21)14 Letusshowthatthefocalparametersd1;:::;dNofthere\rectorRsatisfythesystem(13).Supposethatforsomej�1wehaveG(R;vj)Lj:Thenwecandecreasedjbyasucientlysmallamountandconstructanewre\rectorR0forwhichG(R0;v1)L1;G(R0;vi)Li;fori&#x-272;&#x.280;1:Forthisre\rectorwehaved0jdjwhichisimpossiblebecauseof(21).Itcanbeshown(see[16])thatforagiventolerancetheaboveprocessterminatesina nitenumberofstepswiththedeterminedre\rectorRsatisfying(13)withinthespeci edtolerance.There\rectordeterminedbytheabovealgorithmisaclosedconvexsurface.However,itsportionoutsideofthepartthatprojectsradiallyontotransmitsnoenergy(sinceI(m)0whenm2Sn).Deletingthepartofthere\rectorsurfaceoverSnweobtainthe nalsolution(withinauserspeci edtolerance).Bylettingthetolerancetendto0weobtainasequenceofre\rectorsconvergingtoare\rectorsatisfyingthesystem(13)exactly.3.2.4UniquenessofSolutiontoSystem(13)Asthenoteattheendofsection3.1indicateswecannotexpectthatthedeterminedsolutionisunique.Thesameobservationappliestore\rectorsconstructedbysolvingthesystem(13).Indeed,intheconstructionofthere\rectordescribedinprecedingsection,the rstellipsoidwas xedonlyuptothechoiceoftheparameter andthereforeanotherre\rectorsatisfying(13)canbeconstructedbysimplychoosingdi erentlythisparameter.However,theuniquenessstillholdsinthefollowingsense.LetRandR0betwosolutionsofthesystem(13).LetRbedeterminedbyellipsoidswithfocalparametersd1;d2;:::;dNandR0byd01;d02;:::;d0N.Supposethatthetwore\rectorshaveacommonellipsoid.Thenthetwore\rectorscoincide.Thisisprovedin[15].Thus,inparticular, xingtheparameter xesuniquelyasolution.4DistributedOutputPowerPatternsLetnowTbearegiononsomeplaneandL(v);v2T;afunctionde ningtherequiredoutputpowerpatternonT.Assumethatthebalanceequation(4)issatis ed.There\rector15 approximatingtherequiredre\rectorwithinanyuserspeci edtoleranceisconstructedinthiscaseviaaprocedurewhichreducesthisproblemtotheproblemofconstructingare\rectorde nedbya nitenumberofellipsoids.Thisprocedureisasfollows.PartitiontheregionTintosmallsubregionsTi;i=1;2;:::;NsothatT=SNi=1Ti.PutLi=ZTiL(v)d(v):PickapointviineachTiandsolvethesystem(13)withthepointsv1;:::;vNandpowersL1;:::;LNatthecorrespondingpoints.Denotetheresultingre\rectorbyRN.ItcanbeshownthatasthediametersofthesetsTishrinktozerothecorrespondingsequenceofre\rectorsfRNgconvergestoare\rectorRsolvingthere\rectorproblemwiththepowerpatternLspeci edonT.Furthermore,foragiventoleranceonecanconstructare\rectorapproximatingRwithinthistoleranceina nitenumberofsteps.Themathematicshereissomewhatinvolvedandwereferthereaderforfurtherdetailstothepapers[15,16].5AvoidingBlockage5.1AvoidingSelf-blockageLetusshownowthatbyappropriatechoiceoftheparameter in(16)there\rectorcanbedesignedsothatself-blockagecanbecompletelyavoided.Byself-blockagewemeanhereasituationwhenapartoftheoutputapertureTisblockedbysomepartsofthere\rectorsurfacefromtheraysre\rectedo otherpartsofthere\rector.Again,fromthepointofviewofnumericsandapplications,thecasewhenthere\rectorisconstructedwitha nitenumberofellipsoidsistheonethatneedstobeconsideredthoughthedescribedresultisalsovalidingeneral.Ithasbeenexplainedattheendofsection3.2thatwithourconstructionofare\rectortheself-blockagewillnothappenifforallellipsoidsformingthere\rectorthefocalparameterssatisfytheinequality(12).Therefore,itfollowsfrom(19)thatif ischosensothat 4! M(1\r)(22)then,settingd1= M,weareguaranteedthatallellipsoidsintheconstructedre\rectorwillcontainTinsideandnoself-blockagewilloccur.16 5.2AvoidingBlockagebytheFeedAcommonprobleminaxiallysymmetricre\rectorsisthatiftheradiationsourceispositionedontheaxisthenitbecomesasecondaryscattererandthatleadstoenergylosses.Fromtheconstructiondescribedinsection3.2.3itfollowsthatthefollowingconditionguaranteesthatnoblockageofre\rectedrayswilloccur.LetCDdenoteaconegeneratedbyraysfromOthroughthepointsintheinputaperture.Letl1;:::;lNbetheraysfromOpassingthroughv1;:::;vN,respectively.Sinceourre\rectorsareconstructedofellipsoids,itisclearthatforare\rectedraytopassthroughOandvitheinputapertureshouldincludeadirectionm=^vi.Suchpossibilityisexcludedifwerequirethatnotworays,onefromCDandonefromthesetl1;:::;lN,formtogetheracompletestraightline.Whenthetargetisaspeci edregionnotlimitedtoa nitenumberofpointsthisconditionshouldbeformulatedasfollows.LetCTbeaconegeneratedbyraysfromOthroughthepointsintheoutputapertureT.Inordertoavoidblockageofre\rectedraysbythesourceO,thepositionsoftheinputapertureandoutputapertureTshouldbesuchthatnotworays,onefromCDandonefromCT,formtogetheracompletestraightline.Inpractice,ofcourse,oneshouldalsotakeintoaccountthesizeofthefeed.6ExamplesInthissection,wepresentfourexamplescalculatednumericallywiththealgorithmde-scribedinsection3.2.3.Thecodeusedforcomputingsolutionspresentedinthispaperisasigni cantlyimprovedversionoftheoriginalcodeusedforcalculatingtheresultsin[16].EXAMPLE1.Inthe rstexample,shownschematicallyonFig.5,therewereused25nodesuniformlydistributedovertheoutputapertureT.Thesolutionwasconstructedwith25ellipsoidswithonefocusatthesourceOandsecondfociatthenodesonT.Inthisexample,thediameterofT!(T)=p 2m,distancefromthesourcetothecentralnodeonTish=200m,themaximumamongalldistancesfromthesourcetonodesonTis200:005m,andtheparameter\r:4938639.Usingtheinequality(22),itcanbedeterminedthatself-blockagewillbeavoidedifthefocalparameterofthe rstellipsoidd14! 1\r3:786727.Theactualcomputationswerecarriedoutwithd1=3:8.Thisgivesfortheparameter :019.Since3:799712!=2p 2,thecondition(12)issatis ed.Infact,thisinequalityshowsthatinthiscasewecouldhavetakend1justslightlybiggerthan2p 2(seeexample2below).Becausetheoutputenergypatternwasrequiredtobeuniformandthevariationofthe17 T OUTPUT INPUT APERTURE D,5ENERGY FEED q,f) = 10exp(-3q), q - ANGULAR DISTANCEFROM CENTRAL RAY FEED REFLECTOR OUTPUT ENERGY PATTERN L(v) IS REQUIRED TO BE UNIFORM L(v) h h - DISTANCE IN METERS FROM SOURCE TO THE PLANE OF OUTPUT APERTURE A O B AOB = 135LE 2) o o o Figure5:Geometryofthesinglere\rectorinexample1.feedenergydensityisnotverysigni cantalloftheresultingellipsoidshadfocalparameterscloseto3:8withthemaximum=3:80618andminimum=3:79972.Ittook348iterationstoreachasolutionforwhichmaxjcomputedoutputdensitydistributionrequireduniformdistributionj0:01:Thewallclockrun-timewas19minutesona300MHZSiliconGraphicscomputerwithoneprocessor.Thedesignedre\rectorhasthefollowingdimensions:thedistancefromthesourcetothere\rectoralongthecentralrayis2:25mandthediameterofthere\rectoris1:27m.Itisimportanttonotethatintheaboveinequalitywearecomparingoutputdensitydistributionwiththedensitydistributionforthetruesolutionandtheboundontherighthandsideisuser-speci ed.Ifthisboundisdecreasedthenumberofiterationswillincrease,insomecases,quitesigni cantly.Asnapshotofthecomputergeneratedpictureofthefoundre\rectorisshowninFig.6.Notethattheapexofthere\rectorisdisplacedslightlyinthedownwarddirection.Thisisduetothefactthattheoutputapertureisatananglewiththeinputaperture(=135obetweencentralraysfromthesourcetotheinputapertureandtothetarget;seeFig.5).AstheangleAOBbecomessmallerthisdisplacementbecomesmoresigni cant;seeexample2below.EXAMPLE2.Inthesecondexamplethesettingwassimilartotheexample1,butthefollowingparameterswerechanged: AOB=90oandthefocalparameterofthe rstellipsoidwastaken=1:7.Thediameterofthisre\rectoris1:3m.Thedistancefrom18 Figure6:Aview(fromtheback)ofthere\rectorinexample1.thesourcetothere\rectoralongthecentralrayis1:7m.Therun-timeinthiscasewas13minutes.Asnapshotofthecomputergeneratedpictureofthere\rectorisshowninFig.7.Itclearlyshowsfurtherdisplacementofthesurfaceapexindownwarddirection.EXAMPLE3.Inthethirdexamplealldatawerethesameasinexample1exceptforthedistancehtothetargetaperturewhichwastaken=200;000m.Thisresultedonlyasmallchangeinthechoiceofthefocalparameterofthe rstellipsoidwhichwastaken=3:772.Thediameterofthedeterminedre\rectoris1:26mandthedistancefromthesourcetore\rectoralongthecentralrayis2:23m.Apictureofthisre\rectorisshownonFig.8.Thisexampleshowsthattheproposedtechniquescanbealsousedfordesigningre\rectorswithpre-speci edenergypatternsacrossfar- eldregions.EXAMPLE4.Thepurposeofthisexampleistoillustratethebehaviorofthealgorithmwhenthenumberofellipsoidsintheproblemincreases.Inthisexample,allofthedataremainsthesameasinexample1exceptforthenumberofellipsoidswhichwastakentobe36.Inthiscase,thealgorithmmade613iterations;therun-timewas1hour20minutes.Itsdiameteris1:27mandthedistancefromsourcetore\rectoralongthecentralrayis2:24m.Theexample4andotherexperimentsthatweperformedshowthatthecomputationaltimegrowswiththenumberofellipsoidsusedinthesolution.Whiletestingthecodeonnumerousexamplesweobservedthatthealgorithm ndsquicklyarelativelygoodapproxi-mationandthenitslowsdownastheiteratesapproachthetruesolution.Suchbehavioris19 Figure7:Aviewofthere\rectorinexample2.verytypicalfornumericalschemesdealingwithequationscontainingstrongnonlinearities.In[21]wepresentedastrategyforimprovingsigni cantlytheconvergencepropertiesinasimilarcaseofanonlinearproblem.Currently,weareinvestigatingtheapplicabilityofthisstrategytotheproblemconsideredhere.Itshouldbenoted,however,thatforpracticaldesignapplicationsthecurrentversionofthecodewillmostlikelybesucient.Thefactthatthealgorithmdoesnotrequiretheknowledgeofaninitialapproximationmakesitparticularlyattractive.Ofcourse,thefactthatitissupportedbyarigorousmathematicaljusti cationisofcriticalimportance,sincethismakesthenumericalresultsreliable.7ConclusionInthispaperanewmethodforsynthesisofo set,shaped,singlere\rectorantennasispre-sented.Thesynthesisproblemisconsideredingeometricalopticsapproximation.Incon-trastwithpreviouslyknownGOsynthesismethodsthevalidityofthemethodpresentedhereisestablishedbymathematicallyrigorousarguments.Ourresultscompletelyresolvethequestionsofexistenceanduniquenessofsolutionstotheabovesynthesisproblem.Is-suesregardingself-blockageandblockagebythefeedhavebeeninvestigatedandconditionswhichguaranteeavoidanceofsuchblockagesarepresented.Thisleadstodesignsofre\rectorantennaswithhigheciency.Thenewmethodhasbeenimplementedinacomputercode20 Figure8:Aviewofthere\rectorinexample3.andseveraldesigncasesarepresentedhere.Thecorrespondingnumericalprocedureisaniterativeonewhichstartswithaninitialsolution.Aimportantadvantageofournumericalprocedureisthattheinitialsolutioncanbeexplicitlyandeasilydeterminedfromtheinitialdata.Theproposedmethodanditsnumericalimplementationshouldhaveapplicationsinvariousimportantproblemsofdesignofcontourbeamshapingspacecraftandgroundsystemsinwhichhighgainisrequiredando setgeometrymustbeutilizedtoachievehigheciency.Acknowledgement.TheresearchofVladimirOlikerwaspartiallysponsoredbytheAFOSRundercontractF49620-97-C-0007andbytheEmoryUniversityResearchCom-mittee.References[1]V.Galindo-Israel,W.A.Imbriale,R.Mittra,andK.Shogen,Onthetheoryofthesyn-thesisofo setdual-shapedre\rectors{caseexamples,IEEETransactionsonAntennasandPropagation39,No.5,620-626(1991).21 [2]V.Galindo-Israel,W.A.Imbriale,andR.Mittra,Onthetheoryofthesynthesisofsingleanddualo setshapedre\rectorantennas,IEEETransactionsonAntennasandPropagation35,No.8,887-896(1987).[3]B.E.Kinber,Inverseproblemsofthere\rectorantennastheory-geometricopticsap-proximation,Preprint38,AcademyofSc.,USSR,1-48(1984),inRussian.[4]B.S.Westcott,ShapedRe\rectorAntennaDesign,ResearchStudiesPress,Letchworth,UK,1983.[5]W.V.T.Rusch,Quasiopticalantennadesign(section3.4),inThehandbookofAntennaDesign,Volumes1and2,ed.byA.W.RudgeandK.MilneandA.D.OlverandP.Knight,PeterPeregrimsLtd.,London,UK,1986.[6]T.E.HortonandJ.H.McDermit,Designofaspecularasphericsurfacetouniformlyradiatea\ratsurfaceusinganonuniformcollimatedradiationsource,J.HeatTransferNovember,453-458(1972).[7]J.H.McDermitandT.E.Horton,Re\rectiveopticsforobtainingprescribedirradiativedistributionsfromcollimatedsources,AppliedOptics13,No.6,1444-1450(1974).[8]D.G.BurkhardandD.L.Shealy,Simpli edformulafortheilluminanceinanopticalsystem,AppliedOptics20,No.5,897-909(1981).[9]D.G.BurkhardandD.L.Shealy,Specularasphericsurfacetoobtainaspeci edirradi-ancefromdiscreteorcontinuouslinesourceradiation:design,AppliedOptics14,No.6,1279-1284(1975).[10]S.Cornbleet,MicrowaveandOpticalWaveGeometry,JohnWiley&Sons,NewYork,1984.[11]J.S.Schruben,Formulationofrelector-designproblemforalighting xture,J.oftheOpticalSocietyofAmerica62,No.12,1498-1501(1972).[12]J.S.Schruben,Analysisofrotationallysymmetricre\rectorsforilluminatingsystems,J.oftheOpticalSocietyofAmerica64,No.1,55-58(1974).[13]V.I.Oliker,Nearradiallysymmetricsolutionsofaninverseproblemingeometricoptics,InverseProblems3,743-756(1987).[14]L.A.Ca arelliandV.I.Oliker,Weaksolutionsofoneinverseproblemingeometricoptics,Manuscript,1994.[15]S.KochenginandV.I.Oliker,Determinationofre\rectorsurfacesfromnear- eldscat-teringdata,InverseProblems13,363-373(1997).[16]S.KochenginandV.I.Oliker,Determinationofre\rectorsurfacesfromnear- eldscat-teringdataII.Numericalsolution,NumerisheMathematik79,No.4,553-568(1998).22 [17]V.OlikerandL.D.Prussner,Anewtechniqueforsynthesisofo setdualre\rectorsystems,10-thAnnualReviewofProgressinAppliedComputationalElectromagnetics,45-52(1994).[18]M.BornandE.Wolf,PrinciplesofOptics,6-thedition,PergamonPress,Elmsford,NY,1989.[19]F.BrickellandB.S.Westcott,Phaseandpowerdensitydistributionsonplaneaperturesofre\rectorantennas,J.Phys.A:Math.Gen.10,No.4,777-789(1978).[20]V.I.Oliker,Onreconstructingare\rectingsurfacefromthescatteringdatainthegeometricopticsapproximation,InverseProblems5,51-65(1989).[21]V.I.OlikerandL.D.Prussner,Onthenumericalsolutionoftheequation@2z @x2@2z @y2(@2z @x@y)2=fanditsdiscretizations,I,NumerisheMathematik54,271-293(1988).[22]T.GlimmandV.Oliker,Opticaldesignofsinglere\rectorsystemsandtheMonge-Kantorovichmasstransferproblem,J.ofMath.Sciences117,No.3,4096-4108(2003).[23]T.GlimmandV.Oliker,Opticaldesignoftwo-re\rectorsystems,theMonge-KantorovichmasstransferproblemandFermat'sprinciple,IndianaUniv.Math.J.53,Issue5,1255-1278(2004).23