90K - views

ComputersandMathematicswithApplications Contents lists available at ScienceDirect ComputersandMathematicswithApplications journal homepage www

elseviercomlocatecamwa Acomputerapplicationinmathematics MSivasubramanian SKalimuthu DepartmentofMathematicsDrMahalingamCollegeofEngineeringandTechnologyPollachiTamilnadu642003India 2124KanjampattiPOPollachiviaTamilnadu642003India a r t i c l e i n f

Embed :
Pdf Download Link

Download Pdf - The PPT/PDF document "ComputersandMathematicswithApplications ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

ComputersandMathematicswithApplications Contents lists available at ScienceDirect ComputersandMathematicswithApplications journal homepage www






Presentation on theme: "ComputersandMathematicswithApplications Contents lists available at ScienceDirect ComputersandMathematicswithApplications journal homepage www"— Presentation transcript:

ComputersandMathematicswithApplications59(2010)296297 Contentslistsavailableat ScienceDirect ComputersandMathematicswithApplicationsjournalhomepage: www.elsevier.com/locate/camwa AcomputerapplicationinmathematicsM.Sivasubramanian a ,  ,S.Kalimuthu b aDepartmentofMathematics,Dr.MahalingamCollegeofEngineeringandTechnology,Pollachi,Tamilnadu-642003,Indiab212/4,KanjampattiP.O.,Pollachivia,Tamilnadu-642003,India articleinfo Articlehistory:Received15April2009Accepted20July2009 Keywords:NumbertheoryAlgebraGeometryEuclideanpostulatesNon-Euclideangeometriesandphysicalapplicationstogeometryabstract Inthisstudy,acomputerapplicationwasusedtosolveamathematicalproblem.'2009ElsevierLtd.Allrightsreserved. 1.Introduction Geometryisthesecondfieldofmathematics.Itistheextensionofnumbertheory.Thereisnoexactperiodforthe originofclassicalgeometry.EuclidwasthefirstmathematicianwhocompiledElementswhichcontainspropositionsand constructions.InElements,Euclidassumedfivepostulates.Euclidcouldnotprovetheparallelpostulate.AfterEuclidalmost allmathematiciansattemptedtodeducethefifthpostulatefromthefirstfourpostulates.Butunfortunatelyallofthemfailed. Thestudiesonthisfamoushistoricalproblemgavebirthtotwoconsistentmodelsofnon-Euclideangeometries.Theseaffine geometriesarewidelyusedinquantumphysicsandrelativisticmechanics.Also,thesurveysandresearchledtoanumber ofpropositionsequivalenttothefifthpostulate.Saccheri'ssimilartrianglepropositioniswellknownequivalentaxiomto theparallelpostulate.Inthisworktheauthorsderivethepreliminaryresultandsincerelyproposetheopenproblemby usingaphysicalphenomena. 2.Preliminaryresult InclassicalandRiemanniangeometrieswecanconstructsimilartriangles.Butitisimpossibletodrawatrianglesimilar tothegiventriangleinLobachevskiangeometry.LetABCbethegivenLobachevskiantriangle.Magnifythistriangle.Andlet A0B0C0bethemagnifiedtriangleofthegivenLobachevskiantriangleABC.Itiswellknownthatinmagnificationtheangles arepreserved.So,theLobachevskiantrianglesABCandA0B0C0aresimilar.WithoutassumingEuclid'sfifthpostulate,we havederivedthispreliminaryresult.ThisestablishesSaccheri'stheorem[ 14 ].Butithasbeenshownonceandforallthat thefifthpostulateisaspecialcase.Theauthorshaveprovedthisimpossibilityintheirpaper[ 5 , 6 ]. Correspondingauthor.E-mailaddresses: profpk49@yahoo.com (M.Sivasubramanian), ohm@budweiser.com (S.Kalimuthu). 0898-1221/$seefrontmatter'2009ElsevierLtd.Allrightsreserved. doi:10.1016/j.camwa.2009.07.048 M.Sivasubramanian,S.Kalimuthu/ComputersandMathematicswithApplications59(2010)296297297 3.Conclusion ComputermagnificationisaUniversalcomputerphenomenon.Thistechniqueisappliedinphysics,astronomy,biology, medicine,architecture,particlephysics,genetics,microbiologyandinchemistry.Withoutmagnification,deepstudiesand researchareimpossible.Forthefirsttimeinthehistoryofmathematics,theauthorsappliedmagnificationtechnologyand obtainedasolutionforanearly4300yearoldparallelpostulateproblem.Inbriefanimpossiblepropositionwasprovedas possible.Thisisaproblematicproblem.Furtherstudieswillgivebirthtoanewbranchofmathematicalscience. Acknowledgements TheauthorsthanktheChairmanEmeritusDr.N.Mahalingam,ChairmanShri.M.Manickam,theCorrespondentShri. ShankarVanavarayar,theSecretaryProf.C.Ramasamy,theDirectorDr.S.Vijayarangan,thePrincipalDr.V.V.Sreenarayanan andtheHeadoftheDepartmentofMathematicsDr.M.Palanivelfortheirencouragementforthepreparationofthispaper. References [1] www.groups.dcs.standac.uk/~history/HisTopics/Non.Euclidean_geometry . [2] www.cut-the-knot.org . [3] http://www.softsurfer.com/history.html . [4] www.beva.org/math323/asgn6/nov19.htm . [5] M.Sivasubramanian,S.Kalimuthu,Onthenewbranchofmathematicalscience,JournalofMathematicsandStatistics04(2)(2008)122123. [6] M.Sivasubramanian,S.Kalimuthu,OnthenewbranchofmathematicalsciencePart2,JournalofMathematicsandStatistics04(3)(2008)146147.