/
Sowhatisgenerallydoneistostartagoodlocaloptimizationalgorithmata\good Sowhatisgenerallydoneistostartagoodlocaloptimizationalgorithmata\good

Sowhatisgenerallydoneistostartagoodlocaloptimizationalgorithmata\good" - PDF document

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
363 views
Uploaded On 2015-08-26

Sowhatisgenerallydoneistostartagoodlocaloptimizationalgorithmata\good" - PPT Presentation

observedFisherinformationanduseitasanotherapproximationtoFisherinformationOfcoursewestilldontknowsoweneedasecondpluginusingJxxinsteadofJxThepluginprincipleappliesheretooTheerrormade ID: 115564

observedFisherinformationanduseitasanotherapproximationtoFisherin-formation.Ofcourse westilldon'tknow soweneedasecond\plug-in"usingJx(^x)insteadofJx().Theplug-inprincipleappliesheretoo.Theerrormade

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Sowhatisgenerallydoneistostartagoodlocal..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Sowhatisgenerallydoneistostartagoodlocaloptimizationalgorithmata\good"startingpointandtakethesolutionproducedbythealgorithmtobetheMLE(ifthealgorithmconvergestoasolution).Technically,whatisrequiredofthestartingpointtobe\good"isthatitobeysthesquarerootlaw:itsestimationerrorgoestozerolikeaconstantdividedbythesquarerootofthesamplesize.Generally,onejustusesthebestestimatoronecancalculateasthestartingpoint.1.3ExpectedFisherInformationBecausethelogfunctionismonotone,maximizingthelikelihoodisthesameasmaximizingtheloglikelihoodlx()=logLx():(3)Formanyreasonsitismoreconvenienttouseloglikelihoodratherthanlikeli-hood.Thederivativesoftheloglikelihoodfunction(3)areveryimportantinlikeli-hoodtheory.Themomentsofloglikelihoodderivativessatisfysomeimportantidentities.Notethatifthelikelihoodisgivenby(2),thentheloglikelihoodisgivenbylx()=logh(x)+logf(x)(4)andthederivatives(thesearederivativeswithrespectto)donotinvolvethelogh(x)termbecauseitdoesnotcontain.Sothesederivativesarewellde nedandthesameregardlessofwhath(x)weuse.Alsonotethatthemaximizerof(4)nomatterhowde ned(localorglobalmaximizer)doesnotdependonh(x).ThustheMLEisthesame(ifde ned)regardlessofwhath(x)weuse.First,the rstderivativehasexpectationzeroErlx() =0;(5)whererfdenotesthevectorofpartialderivativesofascalarfunctionfofavectorvariable,oftencalledthegradientoff,andrf(x)denotesthevalueofthegradientatthepointx.Second,thevarianceofthe rstderivativeisminustheexpectationofthesecondvarrlx() =�Er2lx() ;(6)wherer2fdenotesthematrixofsecondpartialderivativesofascalarfunctionfofavectorvariable,oftencalledthehessianoff,andr2f(x)denotesthevalueofthehessianatthepointx.Eithersideof(6)iscalledtheexpectedFisherinformation(orjust\Fisherinformation"withno\expected"whenitisclearwhatismeant)andisdenotedI().2 observedFisherinformationanduseitasanotherapproximationtoFisherin-formation.Ofcourse,westilldon'tknow,soweneedasecond\plug-in"usingJx(^x)insteadofJx().Theplug-inprincipleappliesheretoo.TheerrormadebyapproximatingI()byJx(^x)isnegligiblecomparedtotheerrorapproxi-matingtheactualsamplingdistributionoftheMLEbyNormal�;I()�1.1.6SummaryofTheoryTheasymptoticapproximationtothesamplingdistributionoftheMLE^xismultivariatenormalwithmeanandvarianceapproximatedbyeitherI(^x)�1orJx(^x)�1.2MaximumLikelihoodEstimationinR2.1TheCauchyLocation-ScaleFamilyThe(standard)CauchyDistributionisthecontinuousunivariatedistributionhavingdensityf(x)=1 1 1+x2;�1x1:(7)ThestandardCauchydistributionhasnoparameters,butitinducesatwo-parameterlocation-scalefamilyhavingdensitiesf;(x)=1 fx� (8)Iffisanydistributionhavingmeanzeroandvariance1,thenf;hasmeanandvariance2.ButtheCauchydistributionhasneithermeannorvariance.Thuswecallthelocationparameterandthescaleparameter.SincethestandardCauchydistributionisclearlysymmetricaboutzero,theCauchy(;)distributionissymmetricabout.Henceisthepopulationmediananda\good"estimateisthesamplemedian.Arobustscaleestimatoranalogoustothesamplemedianistheinterquartilerange(IQR).TheIQRofthestandardCauchydistributionis�qcauchy(3/4)-qcauchy(1/4)[1]2ThusthepopulationIQRoftheCauchy(;)distributionis2,andhencea\good"estimateofisthesampleIQRdividedby2.2.2MaximumLikelihood2.2.1OneParameterTheRfunctionnlmminimizesarbitraryfunctionswritteninR.Sotomax-imizethelikelihood,wehandnlmthenegativeoftheloglikelihood(foranyfunctionf,minimizing�fmaximizesf).4 �nsim-100ကmu-0ကmu.hat-double(nsim)ကmu.twiddle-double(nsim)ကfor(iin1:nsim){+xsim-rcauchy(n,location=mu)+mu.start-median(xsim)+out-nlm(mlogl,mu.start,x=xsim)+mu.hat[i]-out$estimate+mu.twiddle[i]-mu.start+}ကmean((mu.hat-mu)^2)[1]0.06203118ကmean((mu.twiddle-mu)^2)[1]0.08242236Thetwonumbersreportedfromthesimulationarethemeansquareerrors(MSE)ofthetwoestimators.Theirratioကmean((mu.hat-mu)^2)/mean((mu.twiddle-mu)^2)[1]0.7526013istheasymptoticrelativeeciency(ARE)oftheestimators.NowweseetheMLEismoreaccurate,astheorysaysitmustbe.2.2.3TwoParametersMinustheloglikelihoodforthetwo-parameterCauchycanbewrittenကmlogl3-function(theta,x){+sum(-dcauchy(x,location=theta[1],scale=theta[2],log=TRUE))+}andtheMLEcalculatedbyကtheta.start-c(median(x),IQR(x)/2)ကtheta.start[1]-0.19550620.7125899ကout-nlm(mlogl3,theta.start,x=x)ကtheta.hat-out$estimateကtheta.hat[1]-0.18092990.76055616 2.3.3ExpectedFisherInformationRhasafunctionderivthatdoesderivativesofRexpressions.Butitisn'tverysophisticated.Itwon'tcalculatelikelihoodderivativeshere.Solet'sdothederivativesbypencilandpaper.First,theloglikelihooditselflx(;)=nlog()�nXi=1log�2+(xi�)2The rstderivativesare@lx(;) @=nXi=12(xi�) 2+(xi�)2@lx(;) @=n �nXi=12 2+(xi�)2Rdoesn'tdoanalyticintegralsatall.Butitdoesdonumericalintegrals,whichisallweneedtodoFisherinformation.�theta.hat[1]-0.18092990.7605561�mu-theta.hat[1]ကsigma-theta.hat[2]ကgrad1-function(x)2*(x-mu)/(sigma^2+(x-mu)^2)ကgrad2-function(x)(1/sigma-2*sigma/(sigma^2+(x-mu)^2))ကfish.exact-matrix(NA,2,2)ကfish.exact[1,1]-integrate(function(x)grad1(x)^2*dcauchy(x,+mu,sigma),-Inf,Inf)$valueကfish.exact[2,2]-integrate(function(x)grad2(x)^2*dcauchy(x,+mu,sigma),-Inf,Inf)$valueကfish.exact[1,2]-integrate(function(x)grad1(x)*grad2(x)*+dcauchy(x,mu,sigma),-Inf,Inf)$valueကfish.exact[2,1]-fish.exact[1,2]ကround(n*fish.exact,10)[,1][,2][1,]25.931570.00000[2,]0.0000025.93157ကfish[,1][,2][1,]32.507337270.01480913[2,]0.0148091319.348190968