/
Stat 35b: Introduction to Probability with Applications to Stat 35b: Introduction to Probability with Applications to

Stat 35b: Introduction to Probability with Applications to - PowerPoint Presentation

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
383 views
Uploaded On 2018-01-05

Stat 35b: Introduction to Probability with Applications to - PPT Presentation

Outline for the day EXY EX EY HarmanNegreanu Running a hand multiple times expected value and variance Geometric random variables Negative binomial random variables Midterm is Feb 21 in class 50 min ID: 619942

harman run hand wins run harman wins hand independent 00452 billion 2nd negreanu pot amount pocket 1st 100 156

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Stat 35b: Introduction to Probability wi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Stat 35b: Introduction to Probability with Applications to Poker

Outline for the day:E(X+Y) = E(X) + E(Y).Harman/Negreanu.Running a hand multiple times, expected value and variance.Geometric random variables.Negative binomial random variables.Midterm is Feb 21, in class. 50 min. Open book plus one page of notes, double sided. Bring a calculator!

u

u

Slide2

1

) E(X+Y) = E(X) + E(Y). pp126-127. A fact given in ch.7 is that E(X+Y) = E(X) + E(Y), for any random variables X and Y, whether X & Y are independent or not, as long as E(X) and E(Y) are finite. Similarly, E(X + Y + Z + …) = E(X) + E(Y) + E(Z) + … And, if X & Y are independent, then V(X+Y) = V(X) + V(Y). so SD(X+Y) = √[SD(X)^2 + SD(Y)^2].Example 1: Play 10 hands. X = your total number of pocket aces. What is E(X)? X is binomial (n,p) where n=10 and p = 0.00452, so E(X) = np = 0.0452. Alternatively, X = # of pocket aces on hand 1 + # of pocket aces on hand 2 + …

So, E(X) = Expected # of AA on hand1 + Expected # of AA on hand2 + …

Each term on the right = 1 * 0.00452 + 0 * 0.99548 = 0.00452.

So E(X) = 0.00452 + 0.00452 + … + 0.00452 = 0.0452.

Example 2

: Play 1 hand, against 9 opponents. X = total # of pocket aces at the table. E(X) = ?

Note: not independent! If you have AA, then it’s unlikely anyone else does too.

Nevertheless, Let X

1

= 1 if player #1 has AA, and 0 otherwise.

X

2

= 1 if player #2 has AA, and 0 otherwise, and so on.

Then X = X

1

+ X

2

+ … + X

10

. So E(X) = E(X

1

) + E(X

2

) + … + E(X

10

)

= 0.00452 + 0.00452 + … + 0.00452 = 0.0452.Slide3

Deal the cards face up, without reshuffling.

Let Z = the number of cards til the 2nd king. What is E(Z)? I’ll answer this next time. The solution uses the fact E(X+Y+Z + ...) = E(X) + E(Y) + E(Z) + ....  u  

u

Slide4

2) Harman and Negreanu,

3) Running a hand multiple times, E(X) and V(X). Farha vs. Antonius too. E(X+Y) = E(X) + E(Y). Whether X & Y are independent or not! And, if X & Y are independent, then V(X+Y) = V(X) + V(Y). so SD(X+Y) = √[SD(X)^2 + SD(Y)^2]. Also, if Y = 9X, then E(Y) = 9E(Y), and SD(Y) = 9SD(X). V(Y) = 81V(X).Farha vs. Antonius. Running it 4 times. Let X = chips you have after the hand. Let p be the prob. you win.X = X1 + X2 + X3 + X4, where X

1

= chips won from the first “run”, etc.

E(X) = E(X

1

) + E(X

2

) + E(X

3

) + E(X

4

)

= 1/4 pot (p) + 1/4 pot (p) + 1/4 pot (p) + 1/4 pot (p)

= pot (p)

= same as E(Y), where Y = chips you have after the hand if you ran it once!

But the SD is smaller: clearly X

1

= Y/4, so SD(X

1

) = SD(Y)/4. So, V(X

1

) = V(Y)/16.

V(X) ~ V(X

1

) + V(X

2

) + V(X

3

) + V(X

4

),

= 4 V(X

1

)

= 4 V(Y) / 16

= V(Y) / 4.

So SD(X) = SD(Y) / 2. Slide5

Harman / Negreanu, and running it twice.

Harman has 10 7 . Negreanu has K Q . The flop is 10u 7 Ku . Harman’s all-in. $156,100 pot. P(Negreanu wins) = 28.69%. P(Harman wins) = 71.31%. Let X = amount Harman has after the hand.If they run it once, E(X) = $0 x 29% + $156,100 x 71.31% = $111,314.90.

If they run it twice, what is E(X)?

There’s some probability p

1

that Harman wins both times ==> X = $156,100.

There’s some probability p

2

that they each win one ==> X = $78,050.

There’s some probability p

3

that Negreanu wins both ==> X = $0.

E(X) = $156,100 x p

1

+ $78,050 x p

2

+ $0 x p

3

.

If the different runs were

independent,

then p

1

= P(Harman wins 1st run & 2nd run)

would = P(Harman wins 1st run) x P(Harman wins 2nd run) = 71.31% x 71.31% ~ 50.85%.

But, they’re not quite independent! Very hard to compute p

1

and p

2

.

However, you don’t need p

1

and p

2

!

X = the amount Harman gets from the 1st run + amount she gets from 2nd run, so

E(X) = E(amount Harman gets from 1st run) + E(amount she gets from 2nd run)

= $78,050 x P(Harman wins 1st run) + $0 x P(Harman loses first run)

+ $78,050 x P(Harman wins 2nd run) + $0 x P(Harman loses 2nd run)

= $78,050 x 71.31% + $0 x 28.69% + $78,050 x 71.31% + $0 x 28.69% =

$111,314.90.Slide6

HAND RECAP: Harman 10

 7 . Negreanu K Q . Flop 10u 7 Ku . Harman’s all-in. $156,100 pot. P(Negreanu wins) = 28.69%.P(Harman wins) = 71.31%. ---------------------------------------------------------------------------

The standard deviation (SD) changes a lot!

Say they run it once

.

(see p127.)

V(X) = E(X

2

) - µ

2

.

µ = $111,314.9, so µ

2

~ $12.3 billion.

E(X

2

) = ($156,100

2

)(71.31%) + (0

2

)(28.69%) = $17.3 billion.

V(X) = $17.3 billion - $12.3 bill. = $5.09 billion. SD

s

= sqrt($5.09 billion)~$71,400.

So if they run it once, Harman expects to get back about $111,314.9

+/- $71,400

.

If they run it twice?

Hard to compute, but approximately, if each run were independent, then V(X

1

+X

2

) = V(X

1

) + V(X

2

),

so if X

1

= amount she gets back on 1st run, and X

2

= amount she gets from 2nd run,

then V(X

1

+X

2

) ~ V(X

1

) + V(X

2

) ~ $1.25 billion + $1.25 billion = $2.5 billion,

The standard deviation

s

= sqrt($2.5 billion) ~ $50,000.

So if they run it twice, Harman expects to get back about $111,314.9

+/- $50,000.Slide7

4. Geometric Random Variables

, ch 5.3.Suppose now X = # of trials until the first occurrence.(Again, each trial is independent, and each time the probability of an occurrence is p.) Then X = Geometric (p). e.g. the number of hands til you get your next pocket pair. [Including the hand where you get the pocket pair. If you get it right away, then X = 1.]Now X could be 1, 2, 3, …, up to ∞.pmf: P(X = k) = p1 qk - 1. e.g. say k=5: P(X = 5) = p1 q 4. Why? Must be 0 0 0 0 1. Prob. = q * q * q * q * p.

If X is Geometric (p), then µ = 1/p, and

s

= (√q) ÷ p.

e.g. Suppose X = the number of hands til your next pocket pair. P(X = 12)? E(X)?

s

?

X = Geometric (5.88%).

P(X = 12) = p

1

q

11

= 0.0588

* 0.9412 ^ 11 =

3.02%.

E(X) = 1/p =

17.0

.

s

= sqrt(0.9412) / 0.0588 =

16.5

.

So, you’d typically

expect

it to take 17 hands til your next pair, +/- around 16.5 hands.