/
The Efimov Effect  in Ultracold Gases The Efimov Effect  in Ultracold Gases

The Efimov Effect in Ultracold Gases - PowerPoint Presentation

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
343 views
Uploaded On 2019-06-22

The Efimov Effect in Ultracold Gases - PPT Presentation

Weakly Bounds Systems in Atomic and Nuclear Physics March 8 12 2010 Institut für Experimentalphysik Universität Innsbruck Martin Berninger Francesca Ferlaino Alessandro Zenesini Walter Harm HannsChristoph Nägerl Rudi Grimm ID: 759806

2009 efimov body resonance efimov 2009 resonance body dimer physics universal atomic feshbach phys state theory rev lett bound length prl amp

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "The Efimov Effect in Ultracold Gases" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

The Efimov Effect

in Ultracold Gases

Weakly Bounds Systems in Atomic and Nuclear Physics

March 8 - 12, 2010

Institut für Experimentalphysik, Universität Innsbruck

Martin Berninger

, Francesca Ferlaino, Alessandro Zenesini,

Walter Harm, Hanns-Christoph Nägerl, Rudi Grimm

Slide2

The Efimov Puzzle (an experimentalists view...)

Theory

Experiment

Efimov States in the molecules and nuclei, Rome 2009

Weakly-Bound Systems in Atomic and Nuclear Physics, Seattle 2010

Slide3

Outline

Introduction atomic few-body physics

The Efimov scenarioExperimental Efimov physics with CsOverview experimental Efimov physicsNew results in caesium samples (preliminary)

Collisions in Dimer-Dimer samples

Ultracold exchange reactions

Slide4

last bound level

y(

r

)

halo

dimer

kHz

2-body

Cs

Cs

4-body

Cs

2

Cs

2

Cs

2

Cs

Cs

Cs

3

Cs

Cs

Cs

Cs

Cs

Few-body physics

3-body

Cs

2

Cs

Cs

Cs

Cs

In general complex problem:

strong dependence on potential

many

vib.

levels

non-universal dimer

U(r)~1/r

6

r

U(r)

schematic drawing

THz

Universal regime

scattering length

a>>r

0

r

0

: range of the potential

r

0

~ l

vdW

~ 100a

0

for Cs

s

­

wave scattering length:

dimers

trimers

tetramers

Universal connection:

?

Halo

dimers

Efimov

trimers

Universal

tetramers

Slide5

Ultracold atomic gases as a model system

Quantum gas

Classical gas

T ~ 1µK – 20nK

Temperature

Control knobs

Interactions

Interaction strength

a

crossed-beam trap

w

y

w

z

w

x

3D

2D

1D

Geometry

optical

lattice

„pancake“ trap

Mixtures

different interactions

different mass ratios

Bosonic / Fermionic systems

State

m

F

=3

F=3

m

F

=4

F=4

3

2

MW transfer

caesium

Slide6

magnetic moment of bound state

differs from the magnetic moment

of the incident channel

B

a

a

bg

B

0

F=3+F=3

F=3+F=4

F=4+F=4

(example Cs)

r

U(r)

incident channel

bound state

Tunable interaction:

Feshbach resonance

Magnetic

tunability of the scattering length

Slide7

energy

a

<

0

a

>

0

Two-particle picture

attractive

repulsive

halo

dimer

s-wave resonances for Cs in F

1

=3 F

2

=3 channel

50 G

100 G

-1000

1000

2000

-2000

3000

0

magnetic field (G)

scattering length (

a

0

)

0

150 G

s-wave + d-wave resonances in Cs

bound state in open channel:

E

B

~10kHz

background scattering length

a

bg

~2000a

0

E

b

B

44(6)

34(7)

34(6)

F1 F2

(F1+F2)

E. Tiesinga et al.

Slide8

energy

a

<

0

a

>

0

The Efimov scenario

„Efimov – states“

halo

dimer

×

22.7

×

(22.7)

2

...there exists an infinite series of weakly

bound trimer states for resonant

two-body interaction...

V. Efimov, Phys. Lett. B

33

, 563-664 (1970)

weakly bound trimer

even more weakly

bound trimer

Slide9

a

<

0

deeply bound dimer

Trap loss

energy

Slide10

3-atomic Efimov resonance

OFF resonance

ON resonance

new decay channel

 Enhancement of losses

10nK

200nK

3-Atomic Efimov resonance

Kraemer et al., Nature 440, 315 (2006)

three-body recombination rate

 a

4

recombination

length:

energy

Ultracold sample of

133

Cs atoms

in atomic ground state: F=3, m

F

=3

N ~ 10

5

atoms

T = 10/200nK

Slide11

3-atomic Efimov resonance

10nK

200nK

3-Atomic Efimov resonance

Kraemer et al., Nature 440, 315 (2006)

three-body recombination rate

 a

4

recombination

length:

energy

for a<0,

a  

:

C(a)=C(22.7a)

Braaten & Hammer

for a>0,

a  

:

Atom-Dimer relaxation rate

:

s

0

=1.00624

Braaten-Hammer theory

a

AAA

=-850 a

0

a

min

=210 a

0

L

3

max

=5.7*10

-22

cm

6

/s

L

3

min

=1.33*10

-28

cm

6

/s

Slide12

3-atomic Efimov resonance

energy

E

for a<0,

a  

:

C(a)=C(22.7a)

Braaten & Hammer

for a>0,

a  

:

Atom-Dimer relaxation rate

:

s

0

=1.00624

a

>

0

halo

dimer

Slide13

s-wave state

d-wave

state

# dimer: ~ 4000

# atoms: (3-6)x104 T = 30-300 nK

Separate atoms and dimers by magnetic gradient field before imaging

Measure the time-evolution & extract atom-dimer relaxation rate coefficient

b

Production

of 6s-molecules via

Feshbach association

Atom-dimer Efimov resonance

Slide14

Atom-dimer resonance at

B

=25 G

a

AD

=+400

a

0

universality a>0 and

a<0 via a=0 ?

transition universal to non-universal ?

(r

0

~100a0) any relation to Efimov physics at different Feshbach resonances (@800G)?

Universal relation via pole:

for n=0, n‘=1

 aAD/aAAA= 0.47

Knoop et. al., Nature Physics 5, 227 (2009)

1/

a

a

< 0

a

> 0

Atom-dimer Efimov resonance

Slide15

energy

a

<

0

a

>

0

Tetra1

Tetra2

The extended Efimov scenario

Prediction of two

universal 4-body states

tied to each Efimov trimer!

H. Hammer and L. Platter, Eur. Phys. J. A

32

, 113 (2007)

J. von Stecher, J. P. D’Incao, and C. H. Greene, Nature Physics

5

, 417 - 421 (2009)

Slide16

F. Ferlaino et. al., PRL

102

, 140401 (2009)

Tetra1

Tetra2

thold=250ms

thold=8ms

Four-body states - experimental results

Experiment

~ 0.47 a*T ~ 0.84 a*T

Position of theuniversal 4-body states Theorya*Tetra1 ~ 0.43 a*Ta*Tetra2 ~ 0.9 a*T

4-body

mixed

3-body

Fitting function

simple 3 body

simple 4 body

3 + 4 body

Slide17

F. Ferlaino et. al., PRL

102

, 140401 (2009)

Tetra1

Tetra2

thold=250ms

thold=8ms

Four-body states - experimental results

Experiment

~ 0.47 a*

T

~ 0.84 a*

T

Position of the

universal 4-body states

Theory

a*

Tetra1

~ 0.43 a*

T

a*

Tetra2

~ 0.9 a*

T

Slide18

Overview experimental Efimov physics

Barontini et al., Phys. Rev. Lett.

103, 043201 (2009)

Ottenstein et al., Phys. Rev. Lett. 101, 203202 (2008)Huckans et al., Phys. Rev. Lett. 102, 165302 (2009)Williams et al., Phys. Rev. Lett. 103, 130404 (2009)Wenz et al., Phys. Rev. A 80, 040702(R) (2009)

41

K + 87Rb

6Li

Fermionic systems

Bosonic mixtures

Bosonic systems

Zaccanti et al., Nature Physics 5, (2009)

Pollack et al., Science 326 (2009)

Gross et al., Phys. Rev. Lett 103, 163202 (2009)

Kraemer et al., Nature 440, 315 (2006)Knoop et. al., Nature Physics 5, 227 (2009)F. Ferlaino et. al., Phys. Rev. Lett. 102, 140401 (2009)

133Cs

39K

7Li

F=1, mF=1

F=1, mF=0

Slide19

Successive Efimov Features – bosonic system (39K)

Zaccanti et al., Nature Physics, Vol. 5 (2009)

Florence-Group

Comparison with universal theory:

Valid only for |a|>>r

0

Model for finite-range interactions?

Res:

second order process: A+A+A  D*+AaAD*   losses in an atom sampledue to elastic scattering

Loss

a (a

0)a<03B Maxa1--15004B MaxaT*-650a>03B Mina1+224a2+5650AD Maxa1*30a2*930

Experiment with 39K atomic sampleacross Feshbach resonance, r0=64a0 atomic threshold

Slide20

Usually, in the three-body process 3 particles are lost

Efimov physics in 39K: AD resonances

Thanks to M. Zaccanti & Co-Workers for the slides!

Slide21

…but if AD cross section is large particle losses can be

>>3!!!

Efimov physics in 39K: AD resonances

Thanks to M. Zaccanti & Co-Workers for the slides!

Slide22

Successive Efimov Features – bosonic system (7Li – F=1,mF=1)

Rice-Group

atomic sample 7Li (F=1,mF=1) across Feshbach resonance, r0=33a0

Pollack et al., Science 326 (2009)

Comparison universal theory

Valid only for each side,

systematic discrepancy (factor 2)

Variation in the short range phase across

the Feshbach resonance?

Lossa (a0)a (a0)a<03B Maxa1--298a2--63014B MaxaT1,1-120aT1,2-295aT2,1-2950aT2,2-6150a>03B Mina1+224a2+5650AD Maxindirecta2*608DD Maxdebatea*2,11470a*2,23910

Res:

a>0

a<0

a



Slide23

Ottenstein et al., PRL

101, 203202 (2008)Huckans et al., PRL 102, 165302 (2009)Williams et al., PRL 103, 130404 (2009)Wenz et al., PRA 80, 040702(R) (2009)

Braaten et al., PRL

103

, 073202 (2009)

Naidon et al., PRL

103

, 073203 (2009)Floerchinger et al., PRA 79, 053633 (2009)Braaten et al., PRA 81, 013605 (2010)

Jochim & O‘Hara

6Li 3 componentFermi-Spin-mixture:

|3> mF= -3/2|2> mF= -1/2|1> mF= 1/2

Comparison with universal theoryUsing fit results for high field resonance (895G)reproduces low field resonances accurately: 125(3)G & 499(2)GNo change in the three body parameter for B ~ 750G? for aij ~ lvdw?

Efimov features in fermionic spin mixtures (6Li)

LossstateB(G)a<03B Maxn=0127n=0500n‘=1895

Res:

Slide24

Gross et al., PRL

103

, 163202 (2009)

Khaykovich-Group

atomic sample 7Li (F=1,mF=0)across Feshbach resonance

Comparison with universal theory:a+/|a-| = 0.92(14) (Theory=0.96(3)) Why does 7Li agree so nicely in (F=1,mF=0) and not in (F=1,mF=1)?

Bosonic system showing universality (7Li – F=1,mF=0)

Lossa (a0)a<03B Maxa--264a>03B Mina+1160

Results:

Slide25

Barontini et al., Phys. Rev. Lett.

103

, 043201 (2009)

Efimov Resonances – Heteronuclear systems (41K + 87Rb)

Florence-Group

System composed of distinguishable particles with different massesExperiment with bosonic mixture of 41K and 87Rbat a interspecies Feshbach resonance Two resonantly interacting pairs are sufficient for Efimov physics Existence of two Efimov series:KRbRb: exp(/s0) = 131KKRb: exp(/s0) = 3.51105

Results:

KKRb-resonance

Loss

a (a

0

)

a<0

3B Max

KRbRb-2463B MaxKKRb-22000a>0AD Maxindirecta*667

No oscillations for a>0 observed

Slide26

6d6

B (Gauss)

preliminary

K3

preliminary

Lifetime measurements @ high magnetic fields

Recombination rate @

6s6 resonance ~ 800G, width ~ 90G

T~200nK

Resonance!

Unitarity

limit:

Another piece to the puzzle!

L

3

L

3

f l m

f

Slide27

nD= -L2 nD 2

Measuring relaxation rate L2:

Ferlaino et al., PRL 101, 023201 (2008)

Experimental results: dimer-dimer collisions

s-wave state

d-wave

state

2 atoms in F=3, mF=3

microwave

Sample of universal dimers in 6s-state:

crossed dipole trap (1060nm)

N

D

~ 4000

T ~ 40 – 350 nK

k

B

T << EB ~ h50kHz << EvdW ~ h2.7MHz

105 ultracold 133Cs atoms (40nK) Feshbach association Removal of atoms with microwave Sample of ultracold dimers

scattering length (a

0

)

2-body reaction cross section (Wigner 1948)

energy

a

<

0

a

>

0

Tetra1

Tetra2

?

Slide28

Exchange reactions with distinguishable particles

B

+ A

2

F=4, m

F

=2, 3 or 4

Feshbach molecule / halo dimer

2x (F=3, m

F

=3)

m

F

=3

F=3

F=4

2

m

F

=4

3

MW transfer

A + A

2

F=3, m

F

=3

?

Slide29

total loss

exchange

T=50 nK

b

: atom-dimer loss

rate coefficient

Exchange reactions loss rates

Knoop et al., Phys. Rev. Lett.

104

, 053201 (2010)

Theory:

Jose D’Incao & Brett Esry

B

E

A+A+B

A

2

+B

A+A

B

D

E

new decay channel

m

F

=4

m

F

=3

m

F

=2

resonance @ 35 G:

opening exchange channel

B

E

A+B

A+A

AB

A

2

Slide30

A

2(v=-1)+B → A+AB(v=-1)

Closer look around 35 G

appearance of trapped atoms in state A!

Ultracold exchange reaction

controlled by magnetic field

T=100 nK, t

hold

=22ms

m

F

=4

m

F=3

mF=2

Slide31

Role of the large scattering length

A

2

(v=-1)

+B

A+A

B

(v’<v)

A+A

B

(v=-1)

A

2

(v’<v)

+B

A+A

A+B(

m

F

=2)

A+B(

m

F

=3)

A+B(

m

F

=4)

y(

r

)

Slide32

Theory

Experiment

Experimentalists wish list for Theory

Is there any relation for Efimov physics at different Feshbach resonances

(

133

Cs low fields and Feshbach resonance @ 800G)?

Model for finite-range interactions, transition universal to non-universal (

39

K &

133

Cs)?

Variation in the short range phase across the Feshbach resonance (

7

Li)

– Factor 2?

Why does

7

Li agree so nicely in (F=1,m

F

=0) and not in (F=1,m

F

=1)?

Why there is no change in the three body parameter in

6

Li spin mixture for

B ~ 750G and/or

for a

ij

~ l

vdw

?

Coming soon:

Cs data for

800G resonance

Any connection of Efimov physics from

a>0 to

a<0 via a=0 (

133

Cs)?

– Factor 1/2?

Temperature dependence in

133

Cs halo molecules?

a <<



a



Slide33

The Caesium-Efimov-Team

M.B.

Rudi

Grimm

Francesca

Ferlaino

Alessandro

Zenessini

Hanns-Christoph Nägerl

Walter

Harm