/
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED

MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED - PowerPoint Presentation

tatyana-admore
tatyana-admore . @tatyana-admore
Follow
380 views
Uploaded On 2018-02-15

MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED - PPT Presentation

V Ilyushin 1 I Armieieva 1 O Dorovskaya 1 M Pogrebnyak 1 I Krapivin 1 E Alekseev 1 R Motiyenko 2 L Margulès 2 F Kwabia Tchana 3 A Jabri ID: 631654

sin khz rms cos khz sin cos rms universit

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "MICROWAVE AND FIR SPECTROSCOPY OF DIMETH..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES

V. Ilyushin1, I. Armieieva1, O. Dorovskaya1, M. Pogrebnyak1, I. Krapivin1, E. Alekseev1 , R. Motiyenko2, L. Margulès2, F. Kwabia Tchana3, A. Jabri4, L. Manceron5, S. Bauerecker6, C. Maul61 Institute of Radio Astronomy of NASU, Kharkov, Ukraine2 Laboratoire PhLAM, Université de Lille 1, France3 LISA, Université Paris-Est Créteil, Université Paris Diderot, France4Sorbonne Universités, MONARIS, Paris, France5 Synchrotron SOLEIL, Ligne AILES, Gif-sur-Yvette, France6 Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig, Braunschweig, GermanySlide2

Motivation

=0.062=0.102PAM_C2v_2tops computer programH = (1/4) knpqr1r2s1s2t1t2 Bknpqr1r2s1s2t1t2  {J2kJznJxpJyq[pAr1pBr2cos(3s1A) cos(3s2B)sin(3t1A)sin(3t2B) + (-1)(n+q) pBr1pAr2cos(3s1B) cos(3s2A)sin(3t1B)sin(3t2A)] + [(-1)(n+q)sin(3t2A)sin(3t1B)cos(3s2A)cos(3s1B)pAr2pBr1 + sin(3t2B)sin(3t1A)cos(3s2B)cos(3s1A)pBr2pAr1]JyqJxpJznJ2k}Slide3

AA

species onlyMotivationSlide4

MW spectrometer in Kharkiv

BWO,34 – 150 GHzPLLIF = 25 MHz FM modulated synthesizer25 MHzKlystron 3.4 – 5.2 GHz PLLIF = 5 MHzAbsorbing cellAmplifierLock-in detectorSine wave synthesizer 7 – 120 KHz DAC

DDS AD9851

30 – 60 MHz

Band-pass amplifier 390-430 MHz

Synthesizer 360 MHz

Frequency divider f/2

Frequency

Doubler

(optional)

Detector

Schottky

Reference synthesizer 390-430 MHzSlide5

THz spectrometer

The Lille THz spectrometerFrequency multiplication chain in frequency range150 – 990 GHz : SynthesizerAgilent E8257D 12.5-18.5 GHzActive multiplier (VDI) x6 75–110GHzMultipl. Passifs (VDI)x2: 150 – 220 GHzx3: 225 – 330 GHzx5: 400 – 500 GHzx6: 500 – 660 GHzx9: 750 – 990 GHzVariable attenuatorBased on solid state sourcesFrequency multiplication techniqueAbsorption cell – stainless steel tube 2.2 mMain detector InSb bolometerIn the range 75 – 330 GHz solid state Schottky diode detectors Slide6

SOLEIL synchrotronSlide7

Fragment of

submillimeter wave spectrum of dimethylsulfidetheoryexperimenttheoryexperimentSlide8

Overview

of the 15 = 1  0 torsional band of DMS149.0177.5206.0cm-1163.25191.75220.25experimenttheorySlide9

Q-branch

182.43182.93183.43cm-1182.68183.18183.68experimenttheorySlide10

Fragment of R-branch

198.66198.78198.90cm-1198.72198.84198.96experimenttheorySlide11

Fragment

of P-branch163.05163.19163.33cm-1163.12163.26163.40experimenttheorySlide12

Reassignment

of the FIR spectra A. Jabri, V. Van, H. V. L. Nguyen, H. Mouhib, F. Kwabia Tchana, L. Manceron, W. Stahl, and I. Kleiner, A&A 589, A127 (2016)AA transitions onlySlide13

Current

workA. Jabri et al., A&A 589, A127 (2016)Unc. # rms # rms5 kHz984.7 kHz 99

5.5

kHz

10

kHz

3814

8

.

7

kHz

3

0

kHz

7871

24

.

1

kHz

4

0

kHz

300

27

.

3

kHz

305

52.7

kHz

5

0

kHz

7134

54

.

7

kHz

18

48.6/ 69.7

kHz

100

kHz

3547

68.0

kHz

180

84.6

kHz

200

kHz

29

90.0

kHz

0.0004 cm

-1

1013

0.00012 cm

-1

578

0.00085 cm

-1

Overview of the data set fit quality

# 23752

lines

in

the

fit

,

wrms

= 0.88, J

max

=60, K

a

max

=30

N

par

= 89

gs

14499

transitions

rms=48.79

kHz

11

=1 10068

transitions

rms=41.30

kHz

15

=1 9223

transitions

rms=48.80

kHz

15

 

11

875

transitions

rms=39.22

kHzSlide14

More than

22 000 new lines were added to the dataset in the frequency range from 49 GHz to 660 GHzThe dataset consists of 22739 microwave and 1013 FIR lines covering (15, 11) = (0,0),(0,1),(1,0) torsional states. The range of rotational quantum numbers is expanded up to J = 60 and Ka=30Obtained theoretical model containing 89 parameters provides a fit within experimental error (weighted rms 0.88)SUMMARY OF THE FITSlide15

Senent

M. L., Puzzarini C., Dominguez-Gomez R., Carvajal M., Hochlaf M., 2014, J. Chem. Phys., 140, 124302 A. Jabri, V. Van, H. V. L. Nguyen, H. Mouhib, F. Kwabia Tchana, L. Manceron, W. Stahl, and I. Kleiner, A&A 589, A127 (2016)Comparison with ab initio calculations CCSD(T)/AVTZ level15 = 183.5812 cm-1 CCSD/VTZ anharmonic 182 cm-111 = 177.5400 cm-1 CCSD/VTZ anharmonic 177 cm-1Slide16

Thank you for your attention

This work was done under support of the Volkswagen foundation. The assistance of Science and Technology Center in Ukraine is acknowledged (STCU partner project #P686).