/
Plate Tectonics Plate Tectonics

Plate Tectonics - PowerPoint Presentation

tatyana-admore
tatyana-admore . @tatyana-admore
Follow
459 views
Uploaded On 2015-11-17

Plate Tectonics - PPT Presentation

Imagine the Earth as a hardboiled egg The thin brittle shell is the crust that humans live on The thick jelly like white is the deep hot magma beneath the surface The yellow yolk is the core of the earth ID: 196616

plates plate continental crust plate plates crust continental oceanic move boundaries pressure magma margin mantle forced form surface builds

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Plate Tectonics" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Plate Tectonics

Imagine the Earth as a hardboiled egg…………………….The thin brittle shell is the crust that humans live on.The thick jelly like white is the deep hot magma beneath the surface.The yellow yolk is the core of the earth.Slide2

Tectonic Map of the World

A tectonic plate is like the hard shell on a boiled egg that has been cracked into

pieces

or plates!Slide3
Slide4

Plate Boundary

Diagram

Description

Example

Tensional

(Constructive) plate boundaries

Tensional plate boundaries occur when two plates move away from each other .

North American and Eurasian PlateCompressional (Destructive) plate boundaries Compressional plate boundaries occur when an oceanic plate is forced under (or subducts) a continental plate . Pacific Plate and the Eurasian PlatePassive (Conservative) plate boundaries Passive plate boundaries occur when two plates slide past each other. North American Plate and the Pacific PlateCollision plate boundaries Collision plate boundaries occur when two continental plates move towards each other. Indo-Australian and the Eurasian Plate

What happens at the edges?Slide5

What happens when an oceanic plate

meets a continental plate?

Oceanic crust is denser (heavier) than continental crust so the continental crust forces the oceanic crust underneath it. This is a process called subduction.

At the subduction zone a deep sea trench is formed where the plate is being forced downwards under the continental plate. When the oceanic crust begins to melt as it goes down into the hot mantle it starts to float back up, because it is made up of lighter material than the mantle. This means that the magma erupts back to the surface creating volcanoes.

Compressional Plate MarginSlide6

Key NotesPlates move together

Oceanic crust heavier than continentalOceanic crust is forced under continentalAs it sinks into the mantle the plate melts in the subduction zoneThe heat and pressure in the subduction zone sometimes cause an earthquakeThe newly-formed magma, from the destroyed oceanic crust, is lighter than the mantleSome of it will rise to the surface to form composite volcanoes

The plate that does not sink is crumpled by the pressure and forms

fold mountainsSlide7

What happens when a continental plate

meets a continental plate?

Collision Plate Margin

When continental plates meet continental plates neither can subduct the other because they both have the same density. The plates are being forced together at great pressure so the rocks crumble together and form massive mountain chains like the Himalayas. The Himalayas are still growing today as the plates continue to be pushed together at about 1 or 2cm a year!

The Himalayas are an example of fold mountains, where the rocks are colliding and folding together to form mountains. The Earth’s crust is thickest at this point (70km thick)Slide8

Key NotesPlates move togetherContinental crust and continental crust are both same density so neither sink

Plates forced together at great pressure so rocks buckle and get pushed upwards to form massive mountains (not volcanoes)Movement can also cause earthquakesSlide9

What happens when plates pull apart?

There can never be any gaps on Earth so when tectonic plates pull apart magma from the mantle rises up and solidifies to fill the space.

If oceanic crust is pulling apart from oceanic crust then new crust will made. This means that in some places the sea floor is actually growing! This is a process called sea floor spreading. This is happening along the mid-Atlantic ridge between the UK and America too. Small chains of islands are created in some places as new crust is created it builds into a small volcano that sometimes breaks the surface of the water.

If continental crust pulls apart from continental crust then the same process occurs. As magma erupts to the surface to fill the gap a volcano is created.

Tensional Plate MarginSlide10

Key NotesPlates move apartMostly occurs under oceans

As plates move apart magma rises up from the mantle to fill the gapRising magma forms shield volcanoesEnds of plates crumple to form ridges, such as the Mid-Atlantic RidgeSlide11

What happens when plates move

along side each other?

When plates move along side each other in opposite directions or in the same direction but at different speeds earthquakes are created.

The plate margins are made up of rock that is brittle and jagged so it is difficult for the plates to slide past each other. Sometimes the plates get stuck and pressure builds and builds until eventually they suddenly jerk forwards. This sudden movement and release of pressure is the cause of earthquakes at this type of margin. The most famous conservative plate margin is the San Andreas Fault on the western coast of North America.

Passive Plate MarginSlide12

Key NotesPlates move along side each other but at different speeds

As plate boundaries are made up of rock that is brittle and jagged it is sometimes difficult for plates to slide past each other and they can get stuckPressure builds up along the boundary until one plate jerks past the other causing an earthquake