/
Rosalyn Rosalyn

Rosalyn - PowerPoint Presentation

tatyana-admore
tatyana-admore . @tatyana-admore
Follow
386 views
Uploaded On 2018-01-08

Rosalyn - PPT Presentation

Moran Virginia Tech Carilion Research Institute Dynamic Causal Modelling for Cross Spectral Densities Outline DCM amp Spectral Data Features the Basics DCM for CSD vs DCM for SSR ID: 621205

dcm model data frequency model dcm frequency data cells state spectral parameters csd time neural channel gaba dynamic mode

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Rosalyn" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Rosalyn

Moran

Virginia Tech

Carilion Research Institute

Dynamic Causal Modelling for Cross Spectral DensitiesSlide2

Outline

DCM & Spectral Data Features (the Basics)DCM for CSD vs DCM for SSR

DCM for CSD ExampleSlide3

Outline

DCM & Spectral Data Features (the Basics)DCM for CSD vs DCM for SSR

DCM for CSD ExampleSlide4

Dynamic Causal

Modelling

: Generic Framework

simple neuronal model

Slow time scale

fMRI

complicated neuronal model

Fast time scale

EEG/MEG

Neural state equation:

Hemodynamic

forward model:

neural

activity BOLD

Time Domain Data

Electromagnetic

forward model:

neural

activity EEG

MEG

LFP

Time Domain ERP Data

Phase Domain Data

Time Frequency Data

Steady State Frequency Data

Cross Spectral Densities (Frequency Domain) Slide5

Dynamic Causal

Modelling

: Generic Framework

simple neuronal model

Slow time scale

fMRI

complicated neuronal model

Fast time scale

EEG/MEG

Neural state equation:

Electromagnetic

forward model:

neural

activity EEG

MEG

LFP

CSDs

Hemodynamic

forward model:

neural

activity BOLD

Time Domain Data

Frequency (Hz)

Power (mV

2

)

“theta”Slide6

Dynamic Causal

Modelling: Framework

simple neuronal model

fMRI

complicated neuronal model

EEG/MEG

Neural state equation:

Electromagnetic

forward model:

Hemodynamic

forward model:

Generative Model

Bayesian Inversion

Empirical Data

Model Structure/ Model ParametersSlide7

Inference on models

Dynamic Causal Modelling

: Framework

Bayesian Inversion

Bayes’ rules:

Model 1

Model 2

Model 1

Free Energy:

max

Inference on parameters

Model comparison via Bayes factor:

accounts for

both

accuracy and complexity of the model

allows for inference about structure (generalisability) of the modelSlide8

Inference on models

Inference on parameters

Dynamic Causal Modelling

: Framework

Bayesian Inversion

Model comparison via Bayes factor:

Bayes’ rules:

accounts for

both

accuracy and complexity of the model

allows for inference about structure (generalisability) of the model

Model 1

Model 2

Model 1

Free Energy:

maxSlide9

Dynamic Causal

Modelling

: Neural Mass Model

neuronal (source) model

State equationsExtrinsic Connections

spiny stellate cells

inhibitory interneurons

Pyramidal

Cells

Intrinsic Connections

Internal Parameters

EEG/MEG/LFP

signal

Properties of tens of thousands of neurons approximated by their average responseSlide10

Dynamic equations mimic physiology and produce electrophysiological responses

A Neural

Mass

Model (6) layer cortical regions)

State equations: A dynamical systems

description

of anatomy and physiology

Extrinsic

Connections

spiny

stellate

cells

Supragranular

Pyramidal Cells + inhibitory

interneurons

Deep Pyramidal

Cells + inhibitory

interneurons

Intrinsic

Connections

Internal

Parameters

Eg

.

Time constants of Sodium ion channels

GABAa

receptors

AMPA receptors

Neurotransmitters:

Glu

/GABASlide11

Dynamics mimicked at AMPA and GABA receptors

AP generation zone

synapses

Cortico

-cortical connection

GABAa

receptors

AMPA receptors

Neurotransmitters:

Glu

/GABA

AP generation zone

Intrinsic Connection

Cortico

-cortical connection

Granular

Layer:

Excitatory Cells

Supragranular

Layer:

Inhibitory Cells

Infragranular

Layer:

Pyramidal

CellsSlide12

Parameters quantify

contributions at AMPA and GABA receptors

synapses

Cortico

-cortical connection

GABAa

receptors

AMPA receptors

Neurotransmitters:

Glu

/GABA

AP generation zone

Intrinsic Connection

Granular

Layer:

Excitatory Cells

Supragranular

Layer:

Inhibitory Cells

Infragranular

Layer:

Pyramidal

CellsSlide13

Extrinsic

forward connections

Extrinsic backward connections

Intrinsic connections

Extrinsic lateral connections

spiny

stellate

cells

inhibitory

interneurons

pyramidal cells

State

equations in a 6 layer cortical modelSlide14

Time Differential

Equations

State Space

Characterisation

Transfer Function

Frequency Domain

Linearise

mV

State

equations to Spectra

Moran

,

Kiebel, Stephan, Reilly, Daunizeau, Friston (2007)

A neural mass model of spectral responses in electrophysiology.

NeuroImageSlide15

Predicted response

(Pyramidal Cell Depolarization)

Given an empirical recording: estimate parameters of the model

4

g

3

g

2

g

1

2

4

9

1

4

4

1

2

)

)

(

(

x

x

u

a

x

s

H

x

x

x

e

e

e

e

k

k

g

k

-

-

+

-

=

=

&

&

Excitatory spiny cells in granular layers

3

g

1

g

2

g

5

g

AMPA receptor density

GABAa

receptor density

Glutamate

release

0

2

4

6

8

10

12

14

16

18

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

800

2

4

6

8

10

12

14

16

Frequency (Hz)

Frequency (Hz)

Normalised Power (a.u.)

L-Dopa

Placebo

Frequency (Hz)

Normalised Power (

a.u

.)

0

6

11

16

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Measurement

AMPA time constant

GABA

release

Bayesian Inversion

Increased activity at GABA

r

eceptors

i

n

supragranular

layers

Superficial layers

Granular

layers

Deep layers

GABAa

TC

Moran, Stephan, Seidenbecher, Pape, Dolan, Friston (2009)

Dynamic Causal Model of Steady State Responses.

NeuroImage

Friston, Bastos, Litvak, Stephan, Fries, Moran (2012)

DCM for complex data: cross-spectra, coherence and phase-delays.

NeuroImage Slide16

Neuromodulators

: Acetylcholine/Dopamine

f

Mg

=

Superficial layers

Granular

layers

Deep layers

Sodium Channel

Chloride Channel

Potassium Channel

Depolarization dependent

Calcium Channel

NMDA mediated switch

Neurotransmitters:

Glu

/GABA

A conductance

m

odel offers more biological plausibility

Moran, Stephan, Dolan, Friston (2011)

Consistent Spectral Predictors for Dynamic Causal Models of Steady State Responses

.

NeuroImage

0

2

4

6

8

10

12

14

16

18

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

800

2

4

6

8

Frequency (Hz)

Frequency (Hz)

Normalised Power (a.u.)

Frequency (Hz)

Normalised Power (

a.u

.)

AMPA/NMDA Ratio higher in Prefrontal Regions

t

han Parietal Regions

0

6

11

16

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4Slide17

Roadmap

Specify model

Extract Data Features

Maximise the model evidence (~

-F)Test models or MAP parameters

Find your experimental dataSlide18

Prediction

Prediction

Prediction

Summary:DCM for Steady State Responses

Cortical

Macrocolumns

and free parameters

dx/dt

=

Ax

+ B

| H

1

(

ω

) . H

1

*

(

ω

) |

| H

1

(

ω

) . H

2

*

(

ω

) |

| H

2

(

ω

) . H

2

*

(

ω

) |

Generative ModelSlide19

Cortical

Macrocolumns

and free parameters

dx/dt

=

Ax

+ B

| H

1

(

ω

) . H

1

*

(

ω

) |

| H

1

(

ω

) . H

2

*

(

ω

) |

| H

2

(

ω

) . H

2

*

(

ω

) |

Model Inversion

Summary:

DCM for Steady

State ResponsesSlide20

Outline

DCM & Spectral Data Features (the Basics)DCM for CSD vs

DCM for SSRDCM for CSD ExampleSlide21

Time to Frequency Domain

Linearise

around a stable fixed point or LC

DCM for SSRDCM for CSDSlide22

Prediction

Prediction

Prediction

DCM for Cross Spectral Densities

Cortical

Macrocolumns

and free parameters

dx/dt

=

Ax

+ B

H

1

(

ω

) . H

2

*

(

ω

)

Generative Model

Spectra and Phase lag

Coherence

Cross Correlations

H

1

(

ω

) . H

1

*

(

ω

)

H

2

(

ω

) . H

2

*

(

ω

)Slide23

Cortical

Macrocolumns

and free parameters

dx/dt

=

Ax

+ B

Model Inversion using

full complex signal

Spectra and Phase lag

Coherence

Cross Correlations

H

1

(

ω

) . H

2

*

(

ω

)

H

2

(

ω

) . H

2

*

(

ω

)

H

1

(

ω

) . H

1

*

(

ω

)

DCM for

Cross Spectral

Densities

Prediction

Prediction

PredictionSlide24

Accommodating Imaginary Numbers

F

E:

M:

Real and imaginary

errors

Real and imaginary

derivatives

wrt

fx

, GSlide25

Interface Additions

New CSD routines, similar to SSR

SPM_NLSI_GN accommodates

imag numbers, slopes, curvatures A host of new results features, in channel and source space!RoadmapSpecify model

Extract Data Features

Maximise the model evidence (~

-F

)

Test models or MAP parameters

Find your experimental data

And also report phase lags coherence & delays

In channel or source spaceSlide26

PFC

Hipp

Conditional Estimates:

Spectral Power

10

20

30

40

0

2

4

6

8

10

12

14

16

18

mode 1 to 1

frequency Hz

10

20

30

40

0

2

4

6

8

10

12

14

16

18

mode 2 to 1

frequency Hz

10

20

30

40

0

5

10

15

Spectral density over modes

(in channel-space)

frequency (Hz)

abs(CSD)

10

20

30

40

0

2

4

6

8

10

12

14

16

18

mode 2 to 2

frequency Hz

predicted: trial 1

observed: trial 1

predicted: mode 1

observed: mode 1

predicted: mode 2

observed: mode 2

Abs(H

1

(

ω

) . H

1

*

(

ω

)) Abs(H

1

(

ω) .

H

2

*(

ω))

Abs(

H

2

(

ω

) . H

1

*

(

ω

))

Abs(

H

2

(

ω) .

H

2

*(

ω))

PowerSlide27

PFC

Hipp

0

10

20

30

40

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Channels: 2 to 1

frequency Hz

predicted: trial 1

observed: trial 1

0

10

20

30

40

50

1

1

1

1

1

1

1

1

Coh

:

pfc

to

hipp

frequency Hz

Conditional Estimates:

Coherence

|(H

1

(

ω

).H

2

*

(

ω

))|

2

______________________

{(H

1

(

ω).

H

1

*(

ω))

+ (H

2

(

ω).

H

2

*(

ω))

}Slide28

PFC

Hipp

F

-1

(H

1

(

ω

).H

1

*

(

ω

))

F

-1

(H

1

(

ω

).

H

2

*

(

ω

))

F

-1

(

H

2

(

ω

).

H

1

*

(

ω

)

)

F

-1

(H

2

(

ω

).

H

2

*

(

ω

))

-100

-50

0

50

100

-0.05

0

0.05

0.1

0.15

0.2

mode 1 to 1

lag (ms)

-100

-50

0

50

100

-0.05

0

0.05

0.1

0.15

0.2

mode 2 to 1

lag (ms)

-100

-50

0

50

100

-0.05

0

0.05

0.1

0.15

0.2

Auto-covariance

(in channel-space)

Lag (ms)

auto-covariance

-100

-50

0

50

100

-0.05

0

0.05

0.1

0.15

0.2

mode 2 to 2

lag (ms)

trial 1

channel 1

channel 2

Conditional Estimates:

CovarianceSlide29

PFC

Hipp

arg

(H

1

(

ω

).H

2

*

(

ω

))

____________

ω

0

10

20

30

40

50

-25

-20

-15

-10

-5

0

5

Delay (ms) 2 to 1

frequency Hz

predicted: trial 1

observed: trial 1

0

10

20

30

40

50

-25

-20

-15

-10

-5

0

5

10

Delay (ms)

PfC

to

Hipp

Frequency Hz

trial 1

Conditional Estimates:

DelaysSlide30

Outline

DCM & Spectral Data Features (the Basics)DCM for CSD

vs DCM for SSRDCM for CSD ExamplesSlide31

Pharmacological Manipulation of Glutamate and GABA

4 levels of anaesthesia: each successively decreasing glutamate and increasing GABA

(Larsen

et al Brain Research 1994; Lingamaneni et al

Anesthesiology 2001; Caraiscos et al J Neurosci 2004 ; de Sousa

et al

Anesthesiology

2000 )

LFP recordings from primary

auditory cortex (A1) & posterior auditory field (PAF)

White

noise

stimulus & Silence

-

0.06

0

0.06

0.12

mV

A2

LFP

-

0.06

0

0.06

0.12

mV

-

0.06

0

0.06

0.12

mV

-

0.06

0

0.06

0.12

mV

A1

1.4 %

Isoflurane

1.8 %

Isoflurane

2.4 %

Isoflurane

2.8 %

IsofluraneSlide32

Summary

DCM for CSD:Suitable for long time series with trial-specific spectral features eg pronounced betaFits complex s

pectral data featuresOffers similar connectivity estimates to DCM for ERPsWith estimates of frequency specific delays

and coherenceCan be used with all biophysical, Neural Mass Models (CMC, LFP etc.) Slide33

Thank You

The FIL Methods Group

Karl

FristonDimitris PinotsisMarco LeiteVladimir

LitvakJean DaunizeauStephan KiebelWill Penny

Klaas

Stephan

Andre

Bastos

Pascal Fries

Acknowledgments