/
The Legacy of Srinivasa Ramanujan  Dec The Legacy of Srinivasa Ramanujan  Dec

The Legacy of Srinivasa Ramanujan Dec - PDF document

tatyana-admore
tatyana-admore . @tatyana-admore
Follow
411 views
Uploaded On 2015-05-17

The Legacy of Srinivasa Ramanujan Dec - PPT Presentation

2012 Update May 25 2013 From highly composite numbers to transcendental number theory by Michel Waldschmidt Abstract In a wellknown paper published in 1915 in the Proceedings of the London Mathematical Society Srinivasa Ramanujan de64257ned and st ID: 68885

2012 Update May

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "The Legacy of Srinivasa Ramanujan Dec" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

numberisapositiveintegernforwhichthereexists"�0suchthat,forallk�1,(n) n1+"(k) k1+"Here,isthefunctionsumofdivisors:(n)=Xdjnd:Thesequenceofcolossallyabundantnumbers(referenceA004490in[32])startswith2;6;12;60;120;360;2520;5040;55440;720720;1441440;4324320;21621600;:::Thesuccessivequotientsare:3;2;5;2;3;7;2;11;13;2;3;5;:::Intheirpaper[1],AlaogluandErd}oswrite:...thismakesqxrational.Itisverylikelythatqxandpxcannotberationalatthesametimeexceptifxisaninteger.Thiswouldshowthatthequotientoftwoconsecutivecolossallyabundantnumbersisaprime.Atpresentwecannotshowthis.ProfessorSiegelhascommunicatedtoustheresultthatqx,rxandsxcannotbesimul-taneouslyrationalexceptifxisaninteger.Hencethequotientoftwoconsecutivecolossallyabundantnumbersiseitheraprimeortheproductoftwodistinctprimes.Thisistheoriginoftheproblemthatwenowconsider.2FourexponentialsConjectureandsixexpo-nentialsTheoremIfpandqaredistinctprimesandifxisarealnumbersuchthatpx=randqx=sareintegers,thenwehavex=logr logp=logs logqandthematrixlogplogqlogrlogshasrank1.Onedoesnotknowanexamplewherethishappenswithoutxbeinganinteger.Moregenerally,ifwereplacetheassumptionthatpandqaredis-tinctprimesbytheassumptionthattheyaretwomultiplicativelyindependentpositivenumbers,thentheexpectedconclusionisthatxshouldberational.Recallthattwopositivenumberspandqaremultiplicativelyindependentiftherelationpaqb=1withaandbrationalintegersimpliesa=b=0.Hencethe2 iftisanirrationalnumber,atleastoneofthethreenumbers2t,2t2,2t3istranscendental.Incasetisalgebraic,thesethreenumbersaretranscendentalbyGel'fond{Schneider'sTheorem.Iftisatranscendentalnumberanda,b,carepositiveintegerswithb6=c,thenofatleastoneofthenumbers2ta;2tb;2tc;2ta+b;2ta+cistranscendental.Forinstanceifaandbarepositiveintegers,atleastoneofthenumbers2ta;2tb;2ta+b;2t2a+b:istranscendental.AconsequenceofSchanuel'sConjecturewouldbethatallnumbers2n(n1)aretranscendental.AspecialcaseofthefourexponentialsConjectureisthatatleastoneofthetwonumbers2,22istranscendental.AccordingtothesixexponentialsTheorem,atleastoneofthethreenumbers2,22,23istranscendental.Algebraicapproximationsto2khavebeeninvestigatedbyT.N.Shorey[31]andS.Srinivasan[33,34].Seealso[13].Upperboundsforthenumberofalgebraicnumbersamong2k,(1kN)havebeenobtainedbyS.Srinivasan[34].Seealso[20,21].3FiveexponentialsTheorem,strongfourexpo-nentialsConjectureandstrongsixexponen-tialsTheoremThe veexponentialsTheoremwasprovedin1986[39]Cor.2.2.FiveexponentialsTheorem(Exponentialform).Letx1;x2betwoQ{linearlyindependentcomplexnumbersandy1;y2bealsotwoQ{linearlyindependentcomplexnumbers.Thenatleastoneofthe5numbersex1y1;ex1y2;ex2y1;ex2y2;ex2=x1istranscendental.Thenextresultisstronger:FiveexponentialsTheorem(Matrixform).LetMbea23matrixwhoseentriesareeitheralgebraicnumbersorlogarithmsofalgebraicnumbers.Assumethatthethreecolumnsarelinearlyindependentover Qandthatthetworowsarealsolinearlyindependentover Q.ThenMhasrank2.Wededucetheexponentialformfromthematrixformbyconsideringthematrixlog 11log 121log 21log 22log =x1y1x1y21x2y1x2y2x2=x1:4 4LowerboundfortherankofmatriceswithentrieslogarithmsofalgebraicnumbersTheconclusionsofthepreviousresultsarethatsomematriceshaverank�1.ThesixexponentialsTheoremhasbeengeneralizedin1980[36]inordertoproducelowerboundsfortherankofmatriceswithentriesinLofanysize.Undersuitableassumptions,therankrofsuchad`matrixsatis esrd` d+`Hence,whend=`,rd 2;whichishalfofwhatisexpected.Onecannotexpecttoreachthemaximalrankifoneonlyassumesthatthecolumnsandtherowsarelinearlyindependent:thematrix0@0log2�log3�log20log5log3�log501Ahasrank2only.Themainresultof[36](seealsoTheorem12.17of[42])statesthatad`matrixofranknwithentriesinLisQ{equivalenttoablocmatrixABC0whereCisad0`0matrixwithd0�0andn d`0 d0+`0AconsequenceofthisresultistheanswertoaquestionfromA.Weil[37]:ifthevaluesofaHeckeGrossencharacterarealgebraic(resp.inanumber eld),thenthecharacterisoftypeA(resp.A0).AnotherconsequenceistheanswerbyD.Royin[26]toaquestionraisedbyJ.-L.Colliot-Thelene,D.CorayandJ.-J.Sansuc:givenanumber eldkwithagroupofunitsofrankr,thesmallestpositiveintegermforwhichthereexistsa nitelygeneratedsubgroupofrankmofkhavingadenseimagein(R Qk)underthecanonicalembeddingisr+2.Thereisaversionfornonarchimedeanvaluations,whichimpliesthelowerboundrpr=2forthep{adicrankrpoftheunitsofanalgebraicnumber eld,intermsoftherankrofthegroupofunits[36,38],whileLeopoldt'sConjecturepredictsrp=r.SeealsotheresultswhichareprovedbyM.Laurent[8]andthosewhichareclaimedin[14,15]byP.Mihailescu.Also,theultrametrictranscendenceresulthasapplicationsto`{adicrep-resentations[6].LetKbeanumber eld,andGK=Gal( Q=K)theGalois6 Again,thisnumberrsrt(M)doesnotdependonthechoiceofthebasisfM1;:::;Msg.Further,foramatrixMwithentriesinL,thetwode nitionsofrsrt(M)comingfromtheinclusionLeL,coincide.In[27],D.Royprovesthattherankr(M)ofMsatis es:r(M)1 2rsrt(M):6Schanuel'sConjectureSchanuel'sConjecture[7]statethatLetx1;:::;xnbeQ{linearlyindependentcomplexnumbers.Thenatleastnofthe2nnumbersx1;:::;xn;ex1;:::;exnarealgebraicallyindependent.OneofthemostimportantandopenspecialcasesofSchanuel'sconjectureistheconjectureonalgebraicindependenceoflogarithmsofalgebraicnumbers:if1;:::;narelinearlyindependentlogarithmsofalgebraicnumbers,thenthesenumbersarealgebraicallyindependent.Sofar,itisnotevenknownifthereexisttwologarithmsofalgebraicnum-berswhicharealgebraicallyindependent.Baker'sresultprovidesasatisfactoryanswerforthelinearindependenceofsuchnumbersoverthe eldofalgebraicnumbers.Buthesaysnothingaboutalgebraicindependence.Eventhenon{existenceofnon{trivialquadraticrelationsamonglogarithmsofalgebraicnum-bersisnotyetestablished.AccordingtothefourexponentialsConjecture,anyquadraticrelation(log 1)(log 4)=(log 2)(log 3)istrivial:eitherlog 1andlog 2arelinearlydependent,orelselog 1andlog 3arelinearlydependent.Howeversomethingisknownontheconjectureofalgebraicindependenceoflogarithmsofalgebraicnumbers.Insteadoftakinglinearlyindependentlog-arithmsofalgebraicnumbers1;:::;nandaskingaboutthenon{vanishingofvaluesP(1;:::;n)ofpolynomialsP2Z[X1;:::;Xn],D.Roylooksatthisquestionfromanotherpointofview:startingwithanonzeropolynomialP2Z[X1;:::;Xn],heinvestigatesthetuples(1;:::;n)2Lnwhosecompo-nentsarelogarithmsofalgebraicnumberssuchthatP(1;:::;n)=0.Moregenerally,heremarkedthattheconjectureofalgebraicindependenceofloga-rithmsofalgebraicnumbersisequivalenttothenextstatement:ifVisananealgebraicsubvarietyofCn,thenthesetLn\ViscontainedintheunionoflinearsubspacesofCnrationaloverVcontainedinV.In[27],heprovesspecialcasesofthisstatement.Seealsothepaper[4]byS.Fischler.TheconjectureonalgebraicindependenceoflogarithmsofalgebraicnumberswouldsolvethequestionoftherankofmatriceshavingentriesinthespaceQ[Lspannedby1andthelogarithmsofalgebraicnumbers.Conversely,ithasbeenprovedbyD.RoythattheconjectureonalgebraicindependenceoflogarithmsisequivalenttotheconjecturethatherankofamatrixwithentriesinQ[Lisequaltoitsstructuralrank.Thekeylemma([24,27]{seealso[42]x12.1.5)isthatifkisa eldandP2k[X1;:::;Xn]apolynomialinnvariables,thenthereexistsasquarematrixM,whoseentriesarelinearcombinationsof1;X1;:::;Xnwithcoecientsink,suchthatPisthedeterminantofM.8 ApromisingstrategyforprovingSchanuel'sConjecturehasbeendevisedbyD.Royin[28](seealsox15.5.3of[42]).HeproposesanewconjecturewhichheshowstobeequivalenttoSchanuel'sConjecture.Inaseriesofrecentpapers,heprovedspecialcasesofhisconjecture{seeforinstance[29].7ElllipticfourexponentialsConjectureThequestionofalgebraicindependenceoflogarithmsofalgebraicnumberscanbegeneralizedbyreplacingthemultiplicativegroupbyotheralgebraicgroup,likeanellipticcurve(earlyexamplesarein[18]whichisexpandedin[43])oracommutativegroupvariety.AnexampleofsuchageneralizationoccursinconnectionwithaproblemofK.MahleretYu.V.ManinonthetranscendenceofJ(q)foralgebraicq=e2i.ThisproblemhasbeensolvedbyK.Barre{Siriex,G.Diaz,F.GramainandG.Philibertin1996[3];seealso[44].MixedfourexponentialsTheorem.Letlog bealogarithmofanon{zeroalgebraicnumber.LetZ!1+Z!2bealatticeassociatedwithaWeierstrassellipticcurvehavingalgebraicinvariantsg2,g3.Thenthematrix0@!1log !22i1Ahasrank2.Hereisastrongerstatement.Let}beaWeierstraellipticfunctionwithalgebraicinvariantsg2,g3andEbethecorrespondingellipticcurve.DenotebyLEthesetofu2Cwhicheitherarepolesof}oraresuchthat}(u)isalgebraic.MixedfourexponentialsConjecture.Letu1andu2betwoelementsinLEandlog 1,log 2betwologarithmsofalgebraicnumbers.AssumefurtherthatthetworowsofthematrixM=u1log 1u2log 2arelinearlyindependentoverQ.ThenthematrixMhasrank2.8DensityquestionsAsshownin[41],thesequestionsarerelatedwithaproblemofB.Mazur[9,10,11,12]onthedensityofrationalpointsonvarieties.Seealso[16,17].Justtogiveanexample,apositiveanswertothenextquestionwouldfollowfromthefourexponentialsConjecture(see[43]).For =a+bp 22Q(p 2),write =a�bp 2.De ne 1:=2p 2�1; 2:=3p 2�1; 3:=4p 2�1;9 [13]M.Mignotte&M.Waldschmidt{Approximationsimultaneedevaleursdelafonctionexponentielle,CompositioMath.,34(1977),127{139.[14]P.Mihailescu{OnLeopoldt'sconjectureandsomeconsequences,arXiv:0905.1274Date:Fri,8May200914:52:57GMT(16kb)http://arxiv.org/abs/0905.1274http://arxiv.org/abs/0905.1274v2http://arxiv.org/abs/0905.1274v3http://arxiv.org/abs/0905.1274v4[15]|,ApplicationsofBakerTheorytotheConjectureofLeopoldt,http://arxiv.org/abs/0909.2738http://arxiv.org/abs/1105.5989SNOQIT:SeminarNotesonOpenQuestionsinIwasawaTheory[16]D.Prasad{AnanalogueofaconjectureofMazur:aquestioninDio-phantineapproximationontori,inContributionstoautomorphicforms,geometry,andnumbertheory,JohnsHopkinsUniv.Press,Baltimore,MD(2004),699{709.[17]G.Prasad&A.S.Rapinchuk{Zariski{densesubgroupsandtranscen-dentalnumbertheory,Math.Res.Lett.12(2005),n2{3,239{249.[18]K.Ramachandra{Contributionstothetheoryoftranscendentalnumbers(I),ActaArith.,14(1968),65{72;(II),id.,73{88.[19]|,Lecturesontranscendentalnumbers,TheRamanujanInstituteLectureNotes,vol.1,TheRamanujanInstitute,Madras(1969).[20]K.Ramachandra&R.Balasubramanian{Transcendentalnumbersandalemmaincombinatorics,Proc.Sem.CombinatoricsandApplications,IndianStat.Inst.,(1982),57{59.[21]K.Ramachandra&S.Srinivasan{AnotetoapaperbyRamachandraontranscendentalnumbers,Hardy{RamanujanJournal,6(1983),37{44.[22]S.Ramanujan{Onhighlycompositeandsimilarnumbers,Proc.LondonMath.Soc.(1915)(2)14,347{409[23]|,Highlycompositenumbers,annotatedbyJean{LouisNicolas&GuyRobin.RamanujanJ.1,n2,119{153(1997).[24]D.Roy{Matricesdontlescoecientssontdesformeslineaires,SeminairedeTheoriedesNombres,Paris1987{88,273{281,Progr.Math.,81,BirkhauserBoston,MA(1990).[25]D.Roy{Matriceswhosecoecientsarelinearformsinlogarithms,J.NumberTheory41(1992),n1,22{47.11 [41]|,Densitedespointsrationnelssurungroupealgebrique,Experiment.Math.3(1994),n4,329{352.[42]|,Diophantineapproximationonlinearalgebraicgroups,Grund.derMath.Wiss.326,Springer{Verlag,Berlin(2000).[43]|,OnRamachandra'scontributionstotranscendentalnumbertheory,Ra-manujanMathematicalSocietyLectureNotesSeries2(2006),175{179.[44]|,EllipticFunctionsandTranscendence,DevelopmentsinMathematics17,SurveysinNumberTheoryx7,SpringerVerlag(2008),143{188.MichelWALDSCHMIDTUniversitePierreetMarieCurie(Paris6)TheoriedesNombresCasecourrier2474PlaceJussieu,F{75252PARISCedex05,FRANCEmiw@math.jussieu.frhttp://www.math.jussieu.fr/miw/13