/
ToAppear,Vol.0,No.0(2008)00{002itspowerset.Thetraditionaldiagonalizati ToAppear,Vol.0,No.0(2008)00{002itspowerset.Thetraditionaldiagonalizati

ToAppear,Vol.0,No.0(2008)00{002itspowerset.Thetraditionaldiagonalizati - PDF document

tatyana-admore
tatyana-admore . @tatyana-admore
Follow
386 views
Uploaded On 2016-05-18

ToAppear,Vol.0,No.0(2008)00{002itspowerset.Thetraditionaldiagonalizati - PPT Presentation

ToAppearVol0No02008000045GeneralizingCantorsAgumentInthissectionweshall rstseehowthebasicideaofCantorsargumentintheconstructionofthesetDcanbegeneralizedinanalogywithYablosnonselfreferentia ID: 324842

ToAppear Vol.0 No.0(2008)00{0045GeneralizingCantor'sAgumentInthissectionweshall rstseehowthebasicideaofCantor'sargumentintheconstructionofthesetDcanbegeneralizedinanalogywithYablo'snon-self-referentia

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "ToAppear,Vol.0,No.0(2008)00{002itspowers..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ToAppear,Vol.0,No.0(2008)00{002itspowerset.Thetraditionaldiagonalizationproofconstructssuchasubsetusingthenegationoperator.WeintroduceYablo'snon-self-referentialLiar'sparadox,andpresentadi erentproofofCantor'stheoreminspiredbyYablo'sparadox.Thisproofconstructsanotherleft-oversubsetwhichdoesnotrequireinvokingthenega-tionoperationforitsde nition.Wethendiscussvariousaspectsoftheproof,andindicatesimilaritieswithtwootherparadoxes.WeoutlineotherproofsprovidedbyCantor;and nallyshowyetanotherproofwhichmayinsomesensebeconsidereddualtothenegation-freeproof.2Cantor'sDiagonalizationProofWerecallCantor'sdiagonalizationproofofhiseponymoustheorem.Theorem2.1Cantor'sTheorem:Foranyset,thereisnofunctionmap-pingitsmembersontoallitssubsets.Proof[2,3]:ForanysetX,letP(X)denotethepowersetofX,i.e.P(X)=fTjTXg.SupposethatthecardinalityofXisequaltothecardinalityofP(X).Thismeansthataone-to-onecorrespondencecanbeestablishedbetweenXandP(X).Foranyx2XandTx2P(X),let(x;Tx)denotepairsofelementsestablishedbytheone-to-onecorrespondence.NowconsiderthesetD=fyjy62Tyg.ClearlyD2P(X),andDdi ersfromeverysetTywithrespecttotheelementy.Thusanyone-to-onecorrespondenceomitsthesetD.Q.E.D.NoticethattheconstructionofthesetD,whichisleft-overbyanyone-to-onemapping,involvestheuseofnegationinstatingy62Ty.3ParadoxwithoutCircularityYablo'sparadox[13,14,15]isanon-self-referentialLiar'sparadox.BeforetheformulationofYablo'sparadox,allknownparadoxesinlogicseemedtorequirecircularityinanunavoidableway.Eachofthemusedeitherdirectself-reference,orindirectloop-likeself-reference.So,itappearedasthoughself-referencewasanecessaryconditionfortheconstructionofparadoxicalsentences.Yablo'sparadoxdemonstratedthatthiswasnotthecase.Weprovideabriefoutlineofitinthissection. ToAppear,Vol.0,No.0(2008)00{0045GeneralizingCantor'sAgumentInthissectionweshall rstseehowthebasicideaofCantor'sargumentintheconstructionofthesetDcanbegeneralizedinanalogywithYablo'snon-self-referentialliar'sparadox.SuchageneralizationwouldgiverisetothesetNinthenegation-freeproof.Extendthede nitionofasimpleelementtothenotionofak-simpleelementasfollows.De net2Xtobeak-simpleelementwhenfork�0,thereisnosequences1;:::;sksuchthats12M(t);:::;sk2M(sk�1)andt2M(sk).LetNkbethesetofallk-simpleelementsofX.Thenaneasyargumentshowsthattherecanbenon2XsuchthatNk=M(n).Cantor'sargumenthasN0,wheretis0-simplewhent62M(t).Inthenegation-freeproof,thesetsNkareintermediaries,beforeleadinguptothesetN.WehavereplacedthecirclesmentionedinNkby`omega',i.e.inanalogywithYablo'sparadox,wehaveopenedthesecircles,toconstructN.DoesthesetNusenegation?ItisperhapsnotimmediatelyobviousthatthesetNdoesnotusenegation.Itisde nedas:N=ft2XjtisasimpleelementgByde nition,t2Xisasimpleelementwhenallpossibletracesbeginningwithtterminate.Isthestatement\allpossibletracesbeginningwithttermi-nate"negation-free?Tosettlethisquestionwewouldhavetorewriteitasa rst-orderformula.Anobviousrewriting,whichcomesoutofthede nitionofk-simpleabove,wouldcorrespondto:\thereisnonon-terminatingse-quences1;s2;:::suchthats12M(t);:::;sk2M(sk�1);:::"Negationseemstooccurexplicitlyintheaboveformula.Butthereisalsoanothernegationimplicitinthenotionofanon-terminatingsequenceabove.ThatthesetNisnegation-freecanbeshownasfollows.Wecanalsorewritethestatement\allpossibletracesbeginningwiths0terminate"asa rst-orderformulainanotherway.Fork0,letanelements0inXbecalledsimplewhenforeachpossiblesequence(beginningwiths0):s0;s1;:::;sk(8isi+12M(si))thereexistsajsuchthatM(sj)=.Thischaracterizationisnegation-free. ToAppear,Vol.0,No.0(2008)00{0066.2Mirimano 'sParadoxMirimano 'sParadox,alsoknownastheParadoxoftheClassofAllGroundedClasses,wasformulatedbyDmitriMirimano [6,7,8,16],insettheory.De nition6.3(GroundedClass):AclassXissaidtobeagroundedclasswhenthereisnoin niteprogressionofclassesX1,X2,:::(notneces-sarilyalldistinct)suchthat:::2X22X12X.De nition6.4(ClassofallGroundedClasses):LetYbetheclassofallgroundedclasses.Mirimano 'sParadoxisbroughtoutbythequestion:IsY,theclassofallgroundedclasses,itselfgrounded?LetusassumethatYitselfisagroundedclass.HenceY2Yandsowehave:::Y2Y2Y2YcontrarytogroundednessofY.ThereforeYisnotagroundedclass.IfontheotherhandYisnotgrounded,thenthereisanin niteprogressionofclassesX1,X2,:::suchthat,:::2X22X12Y.SinceX12Y,X1isagroundedclass.Butthen:::2X22X1,whichmeansX1inturnisnotgrounded,whichisimpossiblesinceX12Y.7Cantor'sOtherProofsInthissection,webrie ysketchCantor'stwootherproofsfortheuncount-abilityofthecontinuum[1,2,3,10].Theorem7.1(UncountabilityoftheContinuum)Therecannotbeanyone-to-onecorrespondencebetweenthenaturalnumbersandtherealnumbers.Cantor'sProofbyDiagonalization[2,3]:Considertherealnumbersbe-tweenzeroandone,representedbyin nitedecimalexpansions.Anyattempttoconstructaone-to-onecorrespondencebetweenthethenaturalnumbersandtherealswillfailforthefollowingreason.Foranyone-to-onecorrespon-dencewecanconstructarealnumberthatisanin niteexpansionwhichisdi erentfromeveryotherrealnumberintherangeofthemapping.Thiscanbedonebymakingthenumberconstructeddi erfromthe rstnumberofthemappinginthe rstdecimalplace;di erfromthesecondnumberofthemappingintheseconddecimalplace;andbycontinuinginthiswayto ToAppear,Vol.0,No.0(2008)00{008Lemma8.1(Kurepa'sLemma)IfP=(P;P)isaposet,andthetreeP=(P;P)isde nedasthesetofascendingsequencesofelementsofPorderedbyend-extension,thenthereisnoorderpreserving,one-to-onemappingf:P!P.Proof[4,12]:ConsultfromKurepa[4].Foraproofofamoregen-eralversionoftheabovetheorem,consultfromTodorecevic{Vaananen[12].Q.E.D.Theorem8.2(UncountabilityoftheContinuum)Therecannotbeanyone-to-onecorrespondencebetweenthenaturalnumbersandtherealnumbers.Proof:LetX=fa0;a1;:::gbeanyset,andP(X)denotethepowersetofX.Assumethatitispossibletode neaone-to-onemappingM:P(X)!X.UseMtoconstructchainsinP(X)andXsuchthat:a0=M()a1=M(fa0g)a2=M(fa0;a1g):::a!=M(fa0;a1;:::g)a!+1=M(fa0;a1:::;a!g):::ByKurepa'slemma,Xhastobeaproperclass.ThiscontradictstheassumptionthatXisaset,henceaone-to-onemap-pingMcannotexist.Q.E.D.9ConclusionFundamentaltheoremsarefascinatingphenomenaontheirownright.Equallyfascinatingarepathswhichreconstructtheirproofsusingaminimalorevenanon-standardrepertoireofbasicconstructsandreasoningmechanisms.Wehavetraversedsuchapathinthispaper,andpresenteddi erentproofsofatheoremwhichmarkedthebeginningsoftrans nitesettheory.Wehaveindicatedhowtwooftheproofsbearaspecialrelationshiptooneanother,andthatitmaybepossibletotounifytheminacommonframework.Weareexploringsuchaframework,anditsfurtherimplicationssuchasapossiblemechanismwhichmightautomaticallygeneratethemfromeachother. ToAppear,Vol.0,No.0(2008)00{0010[12]Todorcevic,S.,Vaananen,J.,TreesandEhrenfeucht{Fraissegames,An-nalsofPureandAppliedLogic100(1999)69{97.[13]Yablo,S.:TruthandRe ection,JournalofPhilosophicalLogic,14(1985)297{349.[14]Yablo,S.:ParadoxwithoutSelf-reference,Analysis,53(1993)251{252.[15]Yanofsky,N.S.:AUniversalApproachtoSelf-ReferentialParadoxes,IncompletenessandFixedPoints,BulletinofSymbolicLogic,9(2003)362{386.[16]Yuting,S.,ParadoxoftheClassofAllGroundedClasses,JournalofSymbolicLogic,18(1953)114.[17]Zwicker,W.S.,PlayingGameswithGames:theHypergameParadox,AmericanMathematicalMonthly,94(1987)507{514.