/
2XINCAOExample1.5.Wedeneatranslationt(;)byt(x;y)=(x+;y+).Inotherw 2XINCAOExample1.5.Wedeneatranslationt(;)byt(x;y)=(x+;y+).Inotherw

2XINCAOExample1.5.Wede neatranslationt( ; )byt(x;y)=(x+ ;y+ ).Inotherw - PDF document

tawny-fly
tawny-fly . @tawny-fly
Follow
400 views
Uploaded On 2015-08-19

2XINCAOExample1.5.Wede neatranslationt( ; )byt(x;y)=(x+ ;y+ ).Inotherw - PPT Presentation

rxaxisxyxyAquickcalculationshowsthatthere ectionsareisometrieswhatsmoreisthatanyre ectionisitsowninverseie r r1Example17Wede nearotationrbyrxyxcosysinxsinycosTosh ID: 110527

rxaxis(x;y)=(x;y).Aquickcalculationshowsthatthere ectionsareisometries what'smore isthatanyre ectionisitsowninverse(i.e. r= r1).Example1.7.Wede nearotationrbyr(x;y)=(xcosysin;xsin+ycos).Tosh

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2XINCAOExample1.5.Wede neatranslationt( ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2XINCAOExample1.5.Wede neatranslationt( ; )byt(x;y)=(x+ ;y+ ).Inotherwords,thetranslationt( ; )movestheorigin,O,to( ; ).Weverifythatatranslationisanisometrybyshowingthatitpreservesthesquareofthedistancebetweenanytwopointsontheeuclideanplane.Since,(x02�x01)2+(y02�y01)2=(x2+ �(x1+ ))2+(y2+ �(y1+ ))2=(x2�x1)2+(y2�y1)2;weconcludethatd(f(P1);f(P2))=d(P1;P2)forallP1;P22R2.Andbecause,t( ; )t(� ;� )=t(� ;� )t( ; )=1,theinverseoft( ; )ist(� ;� ).Example1.6.Wede neare ectioninthex-axisisby rx�axis(x;y)=(x;�y).Aquickcalculationshowsthatthere ectionsareisometries,what'smore,isthatanyre ectionisitsowninverse(i.e. r= r�1).Example1.7.Wede nearotationrbyr(x;y)=(xcos�ysin;xsin+ycos).Toshowthateuclideandistanceispreserved,wesquarethedistance,reducetheidentities,andsimplifytoget,d(f(P1);f(P2))=[(x2cos�y2sin)�(x1cos�y1sin)]2=[(x2�x1)cos�(y2�y1)sin]2+[(x2�x1)sin+(y2�y1)cos]2=(x2�x1)2cos2�2(x2�x1)(y2�y1)+(y2�y1)2sin2+(x2�x1)2sin2+2(x2�x1)(y2�y1)+(y2�y1)2cos2=(x2�x1)2+(y2�y1)2:Now,weshowthattherotationshaveinverses.Exercise1.8.Showthatrr=r+andhencethatr�1=r�Byexample1.7,afterrotationbyangleaboutO,wehavex0=xcos�ysin,y0=xsin+ycos.AndafterrotationbyangleaboutO,wehavex00=x0cos�y0sin=(xcos�ysin)cos�(xsin+ycos)sin=x(coscos�sinsin)�y(sincos+sincos)=xcos(+)�ysin(+);Likewise,y00=xsin(+)+ycos(+),whichshowsthatrr=r+.Furthersubstituting�for,weconcludethatr�=r�1.Havingfoundtheinversesforourexamplesthusfar,wecannowexpressrotationsandre ectionsatpointsandlinesotherthantheoriginorx-axis.Thisispossiblebytakingtheconjugateofaisometry.Conjugationisthemethodbywhichweperformthesameoperationbutinanewcoordinatesystem.Forinstance,there ectiont( ; ) rt�1( ; )istheconjugateof rbyt( ; ).Theconjugatebyt( ; )treatsthepoint( ; )asifitweretheoriginoftheplane. 4XINCAO Figure1Second,takeL;Mtobethex-axisandtheliney==2.ThenifwetakeL0;M0tobethelinesy=!;y=!+=2,we ndthat rM0 rL0=r= rM rL.Corollary1.11.Thesetoftranslationsandrotationsisclosedunderproduct.Proof.It'sclearthattheproductoftwotranslationswillalwaysbeatranslation.To ndtheproductoftworotationsaboutdi erent xedpoints,wecandescribetheserotationsasre ectionsaboutlines.Usingtheabovecorollary,givenrotationsrP;andrQ;aboutpointsPandQrespectively,wecanchoosetorepresenttheproductoftheserotationsasproductsofre ectionsinlinesL;M;NshowninFigure1.ThenrP;rQ;= rN rM rM rL= rN rL,whichbyTheorem1.9,isarotationifNmeetsLandatranslationotherwise.Also,byasuitablechoiceoflines,theproductofatranslationandarotationcanalsobeexpressedastheproductoftwore ections.Weareabouttoshowthatallisometriesaretheproductsofatmostthreere ec-tions.Forsimplicity,weassumetheresultsofthefollowinglemmaandcorollary.Basically,thelemmastatesthateveryeuclideanisometryisdeterminedbyitse ectonatriangle.Lemma1.12.AnyisometryfofR2isdeterminedbytheimagesf(A),f(B),f(C)ofthreepointsA,B,Cnotinaline.Corollary1.13.IfListhelineofpointsequidistantfrompointsPandQ,thenre ectioninLexchangesPandQ.Theorem1.14(ThreeRe ectionsTheorem).AnyisometryfofR2istheproductofone,two,orthreere ections.Proof.ConsiderthepointsA;B;Cnotinalineandtheirf-imagesf(A);f(B);f(C).Case(i)IftwopointsofA;B;Ccoincidewiththeirf-images,sayf(A)=Aandf(B)=B,thenthere ectioninthelineLthroughA;BsendsCtof(C)bycorollary1.13. EUCLIDEANISOMETRIESANDSURFACES5Case(ii)IfonlyonepointofA;B;Ccoincideswithitsf-image,sayf(A)=A, rstperformre ection ginthelineMofpointsequidistanttoBandf(B).Then, gsendsA;Btof(A);f(B)respectively.If g(C)=f(C),thenwearedone.Ifnot,thenbycase(i),weperformanotherre ection hinthelineLthroughf(A);f(B),whichsends gCtof(C).Case(iii)NoneofthepointsofA;B;Ccoincidewiththeirf-images.Weperformatmostthreere ections g; h; i,inlinesrespectivelyequidistantfromAandf(A), g(B)andf(B), h(C)andf(C).Bysimilarargumentsasintheprevioustwocases,weareensuredthattheproductofone,two,orthreeofthesere ectionsendsAtof(A),Btof(B),Ctof(C),thusprovingourtheorem.Itstillremainstobeseenhowwewillclassifytheeuclideanisometriesintotranslations,rotations,andglidere ections.Thiswillbecomepossiblebytherealizationthatwecanseparatetheisometriesintotwogroups,onegroupcontain-ingtheproductsofeven-numberedre ections,andasecondgroupcontainingtheproductsofodd-numberedre ections.Wenaturallyrecognizethegroupofeven-numberedre ectionsastheorientation-preservingisometries,andtheothergroupastheorientation-reversingisometries.Corollary1.15.TheisometriesofR2formagroupIso(R2),andtheproductsofevennumbersofre ectionsformasubgroupIso+(R2)ofindex2.Proof.Itisclearthatassociativityholdsforproductsofre ections,hence,alsoforproductsofisometries.Thereisalsoanidentityisometry.Thetheoremestablishesthateveryisometryalsohasaninverse.Sincere ectionsareself-inverses,theinverseofaisometry rL1::: rLnis rLn::: rL1.Thus,theisometriesformagroup,Iso(R2).Italsofollowsthattheproducts rL1::: rL2nofevennumbersofre ectionsformasubgroup,Iso+(R2)sinceproductsandinversesofsuchisometriesareofthethesameform.ToshowthatIso+(R2)isofindex2,weshowthatthecosetIso+(R2) r=fproductsofoddnumbersofre ectionsgisnotIso+(R2).Thisisequivalenttoshowingthat r=2Iso+(R2).Bycorollary1.11,Iso+(R2)containsonlyrotationsandtranslations.Wededucethatre ectionscannotbelonginthissetsincethe xed-pointsetofnon-trivialrotationsisone xedpoint,andthe xed-pointsetoftranslationsiszero,whereasthe xed-pointsetofre ectionsisalineofpoints.Wehavealreadyshownthatisometrieswhicharetheproductsofeven-numberedre ectionsaretranslationsandrotations.Itstillremainstoshowthattheprod-uctsofthreere ectionsandonere ectionareanothertypeofisometry:theglidere ection.De nition1.16.GlideRe ectionsAglidere ectionisanorientation-reversingisometry,describedastheproductofoneorthreere ections(theproductofatranslationandare ection).Fromthisde nition,re ectionscanalsobedescribedasglidere ections,inparticularthosewithtrivialtranslations.Nowweshowthattheremainingeuclideanisometriesareglidere ections.Theorem1.17.Aproduct rN rM rLofre ectionsinlinesL;M;Nisaglidere- ection. EUCLIDEANISOMETRIESANDSURFACES9Thus,anyneighborhoodDQincludesdistinctpointsR;gRinthesame�-orbit,contrarytothehypothesis.Theorem2.4.Adiscontinuous, xedpointfreegroup�ofisometriesofR2isgeneratedbyoneortwoelements.FollowingLemma2.3,weneedonlyconsidertranslationsorproperglidere ec-tionsaspossiblegeneratorsof�,sincebothre ectionsandrotationshave xedpoints.Weprovethistheoremfortranslationsonly,thoughtheideaissimilarifweincludeglidere ections.Proof.Supposethat�containstranslationsonly.ChooseapointP2R2.Since�isdiscontinuous,thereisaminimumdistance�0betweenPandanyotherpointinthe�-orbitofP.Wechooseour rstgeneratort12�asoneofthesenearestmembersof�PtoP.Weclaimthatthepowers:::t�11;1;t1;t21;:::oft1includealltranslationsin�withthesamedirectionast1.Ift2�isanothertranslationinthesamedirectionast1,andiftm1PistheclosestpossiblepointtotP,thent�1tm12�wouldbeatranslationinthesamedirectionast1,butshorter,contrarytothechoiceoft1.Thus,ifthethesetf:::t�11;1;t1;t21;:::gdoesnotexhaust�,thentheremainingtranslationshaveadi erentdirection.Inthiscase,wechooseanothertranslationofminimallengthandcallitt2.Sincet1andt2areindi erentdirections,theygeneratealatticeofpointsinR2{theverticesofatessellationofR2byequalparallelograms(seeFigure).Weshowthatthislatticeisthewhole�-orbitofP.Supposethatthepowersoft1t2=ftm1tn2jm;n2Zgdonotexhaust�,thenthereisatranslationt2�whichisnotalatticetranslation.Iftm1tn2PisthepointclosesttotP,thent�1tm1tn2isatranslationshorterthant1ort2,whichcontradictsourchoicesoft1andt2.ThisisequivalenttoshowingthatanypointQwithinaparallelogramissep-aratedfromatleastonevertexbyadistancelessthanthelengthofthelongestside.Thisisclearfromthe gure(see gure).SinceQmustlieinone-halfoftheparallelogram,Qmustlieinsideacirclewiththelongsideoftheparallelogramastheradius.Corollary2.5.S=R2=�isacylinder,twistedcylinder,torus,orKleinbottle.Fromtheprevioustheorems,wearriveatthesesurfacesdependingonthegen-eratorsof�.1.(Cylinder)-Generatedbyasingletranslation.2.(TwistedCylinder)-Generatedbyasingleglidere ection.3.(Torus)-Generatedbytwotranslations.4.(KleinBottle)-Generatedbyaglidere ectionandtranslation(ortwoglidere ections).Wehavefoundallthepossiblecomplete,connected,euclideansurfaceswhichcanbegeneratedbydi erentisometrygroups,butitremainstobeshownthatthesearetheonlysurfacespossible.Thus,we rstshowthateuclideanplaneisacoverfortheanysuchsurface,andthenprovethatthereisadiscontinuous, xed-pointfreegroupofisometrieswhichgenerateanyofthesesurfaces.ToshowthattheeuclideanplaneR2coversacomplete,connectedeuclideansurfaceS,weuseadeviceknownasthepencilmap.Sincethepencilofapointis EUCLIDEANISOMETRIESANDSURFACES11 Figure4Exercise2.7.Supposethatg1;g2arecoveringisometriesforacoveringf.We rstshowthatg1;g2isacoveringisometry.Sinceg2P2R2,thenfg1(g2P)=fg2P,andhencefg2P=fP.Thisshowsthatfg1g2P=fP,whichmakesg1g2acoveringisometry.Toshowthatanycoveringisometryghasaninverse,webeginbywritinganyP2R2asg�1Q,usingthefactthatgisinvertible.Then,fgg�1Q=fg�1Q,i.e.,fQ=fg�1QforallQ2R2,whichsaysthatg�1isacoveringisometryaswell.Now,toprovethatpisa�-orbitmapunderthecoveringisometrygroup.Theorem2.8.IfpP=pQ,thenQ=gPforsomecoverpandcoveringisometryg(i.e.,P;Qareinthesame�-orbit).Proof.Bythelocalisometrypropertyofp,therearediscneighborhoodsD(P)andD(Q)mappedisometricallybypontoadiscp(D(P))=p(D(Q))ofS.Thus,D(P)p!pD(P)p�1!D(Q)isanisometryg:D(P)!D(Q).SinceD(P)containsthreepointsnotinaline,gisoneoftheeuclideanisometriesclassi edinsection1.Now,weshowthatgisacoveringisometryforp,thatpR=pgRforallR2R2.SupposeforacontradictionthatpR6=pgRforsomeR2R2.Then,considerthesetfRjpR=pgRg,whichweclaimisopenbythefactthatpandpgageeontheopendiscD(P).Then,thesetfRjpR6=pgRgisclosed.SincethefRjpR6=pgRgisclosed,theremustbealeastelement(theoneclosesttoP),whichweshallcallR0.GiventhatR0isthenearestpointtoPwithintheset,considerasequenceR01;R02;:::ofpointsbetweenPandR0whichconvergetoR0.Byhypothesis,pR0i=pgR0iandbycontinuityofpandg,p(limi!1Ri)=pg(limi!1Ri);whichshowsthatpR=pgR,andhenceisacontradiction.Thus,pR=pgRforallR2R2,andgisacoveringisometry. 12XINCAOCorollary2.9(Killing-Hopftheorem).Eachcomplete,connectedeuclideansurfaceisoftheformR=�,andhenceiseitheracylinder,twistedcylinder,torus,orKleinbottle(ifnotR2itself).Acknowledgments.Iwouldliketothankmymentor,DanielStudemund,forintroducingmetothetopicsofthispaper,andforhishelpthroughoutthepaper-writingprocess.IwouldalsoliketothankProfessorMayformakingtheREUanexcitingandinterestingexperienceforstudentsofallmathematicalbackgrounds.References[1]JohnStillwell.GeometryofSurfaces.1992Springer-VerlagNewYork,Inc.