PDF-Denition1(LanguageModel)AlanguagemodelconsistsofanitesetV,andafuncti

Author : tawny-fly | Published Date : 2016-07-08

NThisishoweveraverypoormodelinparticularitwillassignprobability0toanysentencenotseeninthetrainingcorpuswhichseemslikeaterribleideaAtrstglancethelanguagemodelingproblemseemslikearatherstrangetask

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Denition1(LanguageModel)Alanguagemodelc..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Denition1(LanguageModel)AlanguagemodelconsistsofanitesetV,andafuncti: Transcript


NThisishoweveraverypoormodelinparticularitwillassignprobability0toanysentencenotseeninthetrainingcorpuswhichseemslikeaterribleideaAtrstglancethelanguagemodelingproblemseemslikearatherstrangetask. Theorem1.10:Thenumberofnodesintrie(R)isexactlyjjRjjL(R)+1,wherejjRjjisthetotallengthofthestringsinR.Proof.Considertheconstructionoftrie(R)byinsertingthestringsonebyoneinthelexicographicalorder.Initia 2FRANKVALLENTIN (A)dimfx1;x2g=1 (B)dimfy1;y2;y3g=2FIGURE1.AfnesubspacesDenition1.3.Anafnehyperplaneisanafnesubspaceofdimensionn1.Itisdescribedbyone linearequation:fx2Rn:aTx=bg,wherea2Rnnf0g,b2R.F whichwillalsoserveasmotivationforDenition1.2below.Itmustbenotedthatthisisverydifferentfromtheexpectedmaximumexpansionforthecompletespace,asthatwillbe"$#\n !%'&() +*&(, - %)*, ./*whichis FixanintervalIintherealline(e.g.,Imightbe(17;19))andletx0beapointinI,i.e.,x02I:Nextconsiderafunction,whosedomainisI,f:I!Randwhosederivativesf(n):I!RexistontheintervalIforn=1;2;3;:::;N.De nition1.TheN Denition1(DisagreementCoefcient) LetHbeahypothesisclass,DbeadistributionoverXf0;1g,andDxbethemarginaldistributionoverX.Leth?beaminimizeroferrD(h).Thedisagreementcoefcientisdef=supr2(0;1)(B(h?;r) Figure1.Thein nitealternatingweaveDe nition1.2.AsequenceoflinksKnwithc(Kn)!1isgeometricallymaximaliflimn!1vol(Kn) c(Kn)=v8:Similarly,asequenceofknotsorlinksKnwithc(Kn)!1isdiagrammaticallymaximaliflimn De nition1(RealizableGraphs,Edges,andSubgraphs).AgraphGisrealizablei thereexistsasequenceofassignmentsa1;:::;aNsuchthatG0a1!G1!aN!GNGwhereG0:(X;;)istheinitialgraphofthepoints-to-analysisproblem De nition1.5.AssumeweareconcernedwithfunctionsfovernBooleanvariablesx1;:::;xn.Arestrictionorpartialassignment means xingsomeofthevariablesto0or1,andleavingtheremainingvariablesfree.Wealsosaythatthefre Denition1(OrthogonalVectors)Twovectorsu,varesaidtobeorthogonalprovidedtheirdotproductiszero:uv=0: Ifbothvectorsarenonzero(notrequiredinthedenition),thentheanglebetweenthetwovectorsisdeterminedbyco log(1="))fractionofallconstraintsif1"fractionofallconstraintsissatis able.RecentlyTrevisan[17]developedanalgorithmthatsatis es1O(3p "logn)fractionofallconstraints(thiscanbeimprovedto1O(p "logn)[9]) {pairingoftwoknownelements,and{separationofa\join"elementintoitscomponentelements.Tocombinethesetwointuitions:De nition1(Closure).TheclosureofS,writtenC[S],isthesmallestsubsetofAsuchthat:1.SC[S],2.M[ -SMART SMARTFigure1:ThisdiagramillustratesandcontraststheprioritystructuresinducedbytheBiasPropertiesinthede nitionof-SMART(De nition1)andSMART.is,insomesense,oneofthe\smallest"jobsinthesystem.Refer 1Bilu{LinialStabilityKonstantinMakarychevkomakary@microsoft.comMicrosoftResearchRedmond,WA,USAYuryMakarychevyury@ttic.eduToyotaTechnologicalInstituteatChicagoChicago,IL,USAThischapterdescribesrecentre 1BiluLinialStabilityKonstantinMakarychevkomakarymicrosoftcomMicrosoftResearchRedmondWAUSAYuryMakarychevyurytticeduToyotaTechnologicalInstituteatChicagoChicagoILUSAThischapterdescribesrecentresultsonBi

Download Document

Here is the link to download the presentation.
"Denition1(LanguageModel)AlanguagemodelconsistsofanitesetV,andafuncti"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents