/
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS VOL IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS VOL

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS VOL - PDF document

tawny-fly
tawny-fly . @tawny-fly
Follow
454 views
Uploaded On 2014-12-24

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS VOL - PPT Presentation

18 NO 7 JULY 2000 1153 Adaptive Multidimensional Coded Modulation Over Flat Fading Channels Kjell J Hole Member IEEE Henrik Holm Student Member IEEE and Geir E ien Abstract We introduce a general adaptive coding scheme for Nakagami multipath fad ID: 28632

JULY

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE JOURNAL ON SELECTED AREAS IN COMMUN..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.18,NO.7,JULY20001153AdaptiveMultidimensionalCodedModulationOverFlatFadingChannelsKjellJ.Hole,Member,IEEE,HenrikHolm,StudentMember,IEEE,andGeirE.ØienWeintroduceageneraladaptivecodingschemeforNakagamimultipathfadingchannels.Aninstanceofthecodingschemeutilizesasetof -dimensional(2 -D)trelliscodesorig-inallydesignedforadditivewhiteGaussiannoise(AWGN)chan-nels.Anysetof -DtrelliscodesforAWGNchannelscanbeused.Setsforwhichallcodescanbegeneratedbythesameencoderand -Dtrelliscodes.Asanillustrativeexample,wecal-culatetheaveragespectralefficiencyofanadaptivecodecutilizingeight4-Dtrelliscodes.TheexamplecodecisbasedontheInterna-tionalTelecommunicationsUnion’sITU-TV.34modemstandard.IndexTerms—Adaptivetrelliscoding,linkspectralefficiency,Nakagamimultipathfading.I.INTRODUCTIONHEINFORMATIONrateofamobileradiolinkmaybedefinedasthenumberoftransmittedinformation [bits/s],isallowedtovarywiththereceivedCNR,theaverageinformationrate, [bits/s],isobtainedbyaveraging overalldifferentCNR’s.Ifwedenotethebandwidthofthechannelby [Hz],thentheaverageinformationrateperunitbandwidth,calledtheaveragespectralefficiency,isgivenby [bits/s/Hz].Let denotetheobtainableinformationrateonthefadingchannelforagivenreceivedCNRandarbitrarilysmallManuscriptreceivedFebruary26,1999;revisedSeptember14,1999andJan-uary5,2000.K.J.HoleiswiththeDepartmentofInformatics,UniversityofBergen,HiB,N-5020Bergen,Norway(e-mail:Kjell.Hole@ii.uib.no).H.HolmandG.E.ØienarewiththeDepartmentofTelecommunica-tions,NorwegianUniversityofScienceandTechnology,O.S.Bragstadsplass2B,N-7491Trondheim,Norway(e-mail:Henrik.Holm@tele.ntnu.no; overallreceivedCNR’s.IfwedenotetheShannoncapacityby [bits/s],thentheimumavespectralefficiency(MASE)ofthefadingchannel [bits/s/Hz].Theradiospectrumavailableformulti-mediawirelesscommunicationsisscarce,andavariable-ratetransmissiontechniqueforfuturewirelessnetworksmustthere-forehaveaveragespectralefficiency closetotheMASE GoldsmithandVaraiya[1]havedeterminedtheMASEofageneral,single-user,flat-fadingchannelwithperfectchannelstateinformation(CSI)atthetransmitterandreceiverforthreedifferentadaptivetransmissionpolicies:optimalsimultaneoustransmitpowerandinformationrateadaptation,constantpowerwithoptimalrateadaptation,andchannelinversionwithfixedrate.AlouiniandGoldsmith[2]havesinceusedthegeneraltheoryin[1]toobtainclosed-formexpressionsfortheMASEofthethreeadaptivetransmissionpoliciesoverNakagamimulti-pathfading(NMF)channels.Numericalresultsshowedthatthetwoinformationrateadaptationpoliciesyieldnearlythesame -dimensional( -D)trelliscodeswhere issomeposi-tiveinteger.Theindividualcodesshouldbedesignedforaddi-tivewhiteGaussiannoise(AWGN)channels.Anysetof trelliscodesforAWGNchannelscanbeused,butinpracticeonlycodeswithdifferentspectralefficienciesareofinterest.For0733–8716/00$10.00©2000IEEE 1154IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.18,NO.7,JULY2000 ,thecodingschemereducestothe2-Dcodingschemein[4]withconstanttransmitpower.Weconcentrateonthemulti- versionsofthecodingscheme.Thehardwarecomplexityofthecodingschemeissignifi-cantlyreducedifallcodescanbegeneratedbythesameencoderanddecodedbythesameViterbidecoder.UnlikeotherfadingresistantcodingschemesbasedontrelliscodesforAWGN[5],[6],theschemeconsideredheredoesnotutilizeinterleaving.GoodperformanceoftheschemerequiresaccurateestimatesoftheCSIatthedecoderandareliablefeedbackchannelbetweentheencoderandthedecoder.Bufferingoftheinputdataisalsoneededsincetheinformationratevarieswiththechannelcon-InSectionIIIwedevelopageneraltechniquetocalculatetheaveragespectralefficiency ofthecodingschemeforanysetof -Dtrelliscodes.Asanillustrativeexample,wedeterminetheaveragespectralefficiencyofacertainvari-able-rateencoderanddecoder(codec)inSectionIV.Theex-amplecodecisbasedontheInternationalTelecommunicationsUnion’sITU-TV.34modemstandard.ThecodecutilizeseightnestedM-QAMsignalconstellationscontaining4,8,16,32,64,128,256,and512signalpointstoencodeanddecodeeight4-Dtrelliscodes.Theaveragespectralefficiency iscom-paredtotheMASE .AsummaryandadiscussionarepresentedinSectionV.II.SODELANDTheend-to-endsystemforvariable-rateconstant-powerTCMoverNMFchannelswasfirststudiedin[1]–[4]and[7].Itisas-sumedthatthetime-varyingphaseshiftandchannelgain(fadingenvelope)ofthetransmittedsignalareperfectlyknownatthere-ceiver.Consequently,thereceiverisabletofullycompensateforthephasevariation,i.e.,weassumeperfectcoherentdetection.Adecisiondeviceutilizesthechannelgaintoselectanappro-priateinformationratebychoosingacodeamongasetof trelliscodes.Thedecisiondevicetheninformsthetransmitteraboutitsdecisionviaafeedbackchannel.AsmentionedintheIntroduction,the -DtrelliscodesshouldinpracticebegeneratedbythesameencoderanddecodedbythesameViterbidecoder.Hence,weassumethatthetrelliscodesareimplementedasavariable-rateTCMcodecwhereitispossibletochangerateatanytime.Forsatisfactoryoperationofthecommunicationsystem,boththevariable-rateencoderandthevariable-rateViterbidecodermustusethesamecodeatanyinstant.Anefficienterrorcon-trolschemeisthereforeneededtoensureanerror-freefeedbackchannel.Wesimplyassumethatthefeedbackchannelisnoise-Letthetransmitted2-Dsignalhavecomplexbasebandrep- attime .Thestationaryander-godicchannelgain,representedby ,isindependentofthechannelinputandhasthesamevalueinbothsignaldi-mensions.Thereceivedbasebandsignalisgivenby where denotescomplexAWGN.Therealandimaginarypartsofthenoisearestatisticallyindependent,Weremarkthattheprotocolsneededtochangebetweenthedifferentcodesarenotconsideredexplicitly,butareassumedtoworkperfectly.bothwithvariance where [W/Hz]isthetwo-sidednoisepowerspectraldensity. [W]denotetheconstanttransmitsignalpower.TheinstantaneousreceivedCNRofthesystemisequalto ,anditsexpectedvalueis where istheaveragereceivedpowergain[1],[3].Intheremainderofthepaperwewillomitthetimereference andreferto and Thereal-valuedchannelgain ismodeledasacontinuousstochasticvariablewithaNakagamiprobabilitydensityfunc-tion(pdf)controlledbytheNakagamifadingparameter,areal .Theparameter ishereassumedtobeapos-itiveinteger.TheNakagamidistributionrepresentsawiderangeofmultipathfadingchannelsviadifferentintegervaluesof .When thepdfistheRayleighpdf.For theNakagamidistributioncloselyapproximatestheRicedistri-bution[8,p.48].TheinstantaneousreceivedCNR onanNMFchannelisacontinuousstochasticvariablewithgammadistribution.ThePDFfor isgivenby[2],[7] (1)where isthegammafunctionwhichequals !when apositiveinteger.Thefadingbecomeslesssevere increasesbecausethevarianceof ,isThedelayinthefeedbackchannelofthesystemmodelmayreducetheachievableaveragespectralefficiencyforagiventargetBERwhenthechannelgain or,equivalently,there-ceivedCNR changesrapidly[9].Weassumethat ataratemuchslowerthanthesymbolrate,sothatthechannelremainsroughlyconstantoverseveralhundredsymbols,andwethereforeignorethepropagationdelay.TheMASEofthesystemmodelwithconstanttransmitpowerandadelay-freefeedbackchannelis [bits/s/Hz](2)for apositiveinteger[2,eq.(23)].Here isthecomplementaryincompletegammafunctiondefinedby[10,eq.(8.350.2),p.949] Thefunctioniscommonlyavailableinnumericalsoftware.Assumethat quantizationlevels(orfadingregions)areusedtorepresenttheinstantaneousreceivedCNR .Thethe-oreticaltransmissionschemethatachievesMASEhas infinitelysmallfadingregions[1].Ourcodingstrategyforafi-nitenumberoffadingregionsistoassignone -Dtrelliscodetoeachfadingregion.Thetrelliscodesareintroducedtocom-pensateforthefinitequantizationof andthelimitationsonthecodingalphabetassociatedwithrealizablesignalconstellations.Letthe regionsbedefinedbythethresholds .Code , ,isusedwhen etal.:ADAPTIVEMULTIDIMENSIONALCODEDMODULATIONOVERFLATFADINGCHANNELS1155theinstantaneousreceivedCNR fallsinregion ,i.e.,when .Weassumethatfadingregion1representsthesmallestvaluesof forwhichinformationistransmitted.When ,noinformationissent.WeusetrelliscodesforAWGNchannels.Tounderstandwhy,observethatthewidth ofeachfadingregiongoestozerowhenthenumberoffadingregions goestoinfinity.Con-sequently,forlarge thereceivedCNRmaybeapproximatedbyaconstantforeachfadingregionandwemayviewtheNMFchannelatagiventimeinstantasanelementinasetofAWGNchannelswithdifferentbutconstantCNR’s. -Dsignalconstellationforcode isgivenbythe -foldCartesianproductofa2-Dsignalsetwith signalpoints(orsymbols).Eachtimetheencoderforcode ceives informationbits,itgenerates codedbits.Thecodedbitsthendetermine transmittable2-Dmodulationsymbols.Ifthetime betweenthetransmissionoftwoconsecutive2-Dsymbolsissuchthatthereisnointersymbolinterferenceinthesamplesattheoutputofthechannel,thentheinformationrateforcode isequalto [bits/s].SincetheNyquistbandwidthis ,themaximumspectralefficiencyforcode is [bits/s/Hz].Thecodesshouldhavespectralefficiencies whichincreasewith ,i.e., for Thismakesitpossibletotransmitathighinformationrateswhenthereislittleornofading,andtoreducetheinformationrateasthefadingincreases.III.SFFICIENCYOFTHEInthissectionwedetermineageneralexpressionfortheav-eragespectralefficiencyofthecodingscheme.Theexpressionisvalidforanysetof -Dtrelliscodes.ItisfirstarguedthattheBERofa -DtrelliscodeonanAWGNchannelcanbeapproximatedbyanexpressionofthe (3)where istheCNRandtheconstants and dependontheweightdistributionofthecode.Theencoderforthecodegenerates 2-Dmodulationsym-bolseachtimeitreceives informationbits.The2-Dsignalconstellationconsistsof signalpointsdrawnfromaregularlatticewheretheminimumEuclideandistancebetweentwopointsis .When iseven,weassumethattheconstella-tionisquadratic,otherwisetheconstellationhasa“crossshape”asdescribedin[11].TheVoronoiregionofasignalpointisasquarewitharea .Theaveragetransmitenergycanbeex-pressedas where issomepositiverealnumber.Toobtainanexpressionofthedesiredform(3)forequiprob-ablesignaling,weadopttheintegralapproximationtechniqueof[11]toexpress intermsof .When iseven,thesquarecon-stellationhaslength resultinginatotalareaof Weremarkthatthefollowinganalysisdoesnotrequirethatalltrelliscodesaregeneratedbythesameencoderanddecodedbythesamedecoder. .Theaverageenergyofthe signalpointsisapproxi-matelyequaltotheaverageenergy ofallpoints insidetheconstellationarea.Thisintegralapproximationgivesaverageenergyequalto When isodd,theapproximationisequalto Inbothcases,theaverageenergyisapproximatedbyanexpres-sionoftheform for apositivenumber.TheminimumsquaredEuclideandistanceofthe -Dcodecanlikewisebeexpressedas forsome .WhiletheinstantaneousCNRisarandomvariableinthecaseofafadingchannel,theCNRforanAWGNchannelisaconstant .ForahighCNR,theBERcanbeapproximated (4)where istheaveragetotalnumberofinformationbiterrorsassociatedwiththecodewordsindistance fromthecorrectcodeword[12,eq.(14–21),p.376].Wenowsettheaveragetransmitenergy where isanarbitrarypositiveconstant.Itfollowsthat .Ifwethenusetheupperbound andrewrite ,wehavefrom(4)that whichhasthedesiredform(3)for and Wehaveonlyshownthattheapproximationin(3)isgoodforahighCNR.However,plotsofBERfoundintheliteraturestronglyindicatethatwecanusecurvefittingtechniquestode-terminevaluesfor and suchthattheexpressioncanbeusedwithgoodaccuracyalsoformediumandlowCNR’s.WewillillustratethisinSectionIV.WearenowreadytodetermineageneralexpressionfortheaveragespectralefficiencyoftheadaptivecodingschemeonanNMFchannel.Thecodingschemeutilizes trelliscodeswhose2-Dsignalconstellationshave signalpointsandwhoseBERcanbeapproximatedby(3)forsomevalues and for .Code istobeusedwhentheinstantaneousreceivedCNR fallsinfadingregion ,i.e., .Thelowerthreshold isequaltotheleastCNRrequiredtoachieveagiventargetBERdenotedbyBER Weobtainthefollowingthresholdsbyassumingequalityin(3), BER ,andinvertingtheexpres-sionwithrespecttotheCNR: (5)where BER Itmaynotbecompletelyobviousthat for since and varywith ,butthismonotonicityTheintegralapproximationsarecalculatedin[11]for 1156IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.18,NO.7,JULY2000followsfromthefactthat,foragivenBER,theminimumre-quiredCNRforcode islargerthantherequiredCNRfor when .Inpractice, BER suchthat andallthresholds Theaveragespectralefficiency isequaltothesumoverall ofthespectralefficiencies oftheindividualcodes,eachweightedbytheprobability thatthe fallsinregion [bits/s/Hz] Theprobabilities where isdefinedby(1),aregivenby[7,eq.(10)] Forthespecialcaseof apositiveinteger,nonumericalsoftwareprogramisneededtocalculate in(7)sincethereexistsaclosed-formexpression[13,eq.(11.6),p.278] Itfollowsfrom(8)that(7)isgivenby for (Rayleighfading).IV.SFFICIENCYOFInthefollowing,wecalculatetheaveragespectralefficiencyofaparticularinstanceoftheadaptivecodingscheme.Usingtechniquesdescribedin[4]and[14],wedesignedanadaptivecodecwitheight4-Dtrelliscodesutilizingtheeightnested2-DsignalconstellationsinFig.1.Ateacheven ,thevariable-rateencoderreceives tionbits, ,andgenerates codedbits.Theoverallencodercontainstherate2/3trellisen-coderandthebitconverter,butnotthe4-Dblockencoder,de-pictedin[14,Fig.6].Therate2/3trellisencoderandbitcon-verterarealsousedintheInternationalTelecommunicationsUnion’sITU-TV.34modemstandard[15]. codedbitsdefinetwosymbolnumbers,eachintherange ,whichistherangeofthesymbolnumbersforthe2-Dconstellationwith symbols.Thetwochosensymbolsaresentthroughthechannelattimes and Thenumberofinformationbits shiftedintotheencoderdeterminewhich2-Dconstellationandhencewhichcodeisused.Theinstantaneousspectralefficiency maythereforebevariedsimplybychangingthenumberofin-formationbitsshiftedintotheencoder.Sincetheoverallencodergeneratestwosymbolsatthetime,thespectralefficiencymayonlybechangedateventimeinstants.Allcodeshave andtrelliseswith16statesand parallelbranches.TheViterbidecoderforthecodewith isusedtodecodethecodeswith sincethese Fig.1.Nestingofthe4-QAM,8-STAR,16-QAM,32-CROSS,64-QAM,128-CROSS,256-QAM,and512-CROSSsignalconstellations.Thefilledblackcirclesconstitutethe8-STARconstellation.codesareallcontainedinthe code.Aroughestimateofthescheme’shardwarecomplexityisthereforegivenbythehardwarecomplexityofthelargest Theindividualcodes’BERperformancesonanAWGNchannelweresimulatedforvariousCNR’s.Thesimulationpoints(representedbyboxes)areshowninFig.2.ForeachCNR,thesimulationprogramgeneratedatleast200decodedbitsinerrorbeforecalculatingtheBER.Allsimulationpointswerecalculatedusingarelativelyshortpathmemoryoflength9.ThetruesquaredEuclideandistancewasusedasmetricintheViterbidecoder.Tocalculatetheaveragespectralefficiencyoftheexamplecodec,letthe th4-Dtrelliscode, ,bethecodebasedonthe2-DsignalconstellationinFig.1with signalpoints.TheBERforcode canbeapproximatedbytheexpression Curvefittingwiththeleastsquaresmethod[16,Ch.10]isusedtoobtaintheparameters and listedinTableI.TheresultingBERapproximations(9)areplottedinFig.2.Notethattheap-proximatedBERcurvesareveryclosetothesimulatedBERpointsforallcodes.Thethresholds ,calculatedfrom(5),arealsotabulatedinTableI.Theaveragespectralefficiency,ob-tainedfrom(6)and(7),isplottedinFig.3forNakagamifading andaveragereceivedCNR ThedifferencebetweentheMASE(2)andtheaveragespec-tralefficiencyisshowninFig.4.Observethatthedifferencedecreasesas increases.Onereasonforthismaybethatthe8-STARsignalconstellationinFig.1hasaratherlargeaverage etal.:ADAPTIVEMULTIDIMENSIONALCODEDMODULATIONOVERFLATFADINGCHANNELS1157 Fig.2.TheboxesareBERestimatesobtainedfromsoftwaresimulationandthecurvesareestimatesobtainedfrom(9).TABLEI ANDb ODECANDALCULATED (dB)FORTARGETBER =10 energyequalto .Hence,thecodebasedonthe8-STARconstellationrequiresaratherlargereceivedCNR toachievethetargetBER.As increases,theprobabilitythatthissub-optimalcodeisuseddecreases,anditsnegativeeffectontheaveragespectralefficiencydiminishes.V.DISCUSSIONANDUMMARYWehaveintroducedageneraladaptivecodingschemeforsingle-userchannelswithfrequency-flat,slowlyvaryingNMF.Aninstanceoftheschemeutilizes -Dtrelliscodesorig-inallydesignedforAWGNchannels.Ageneralexpressionforthecodingscheme’saveragespectralefficiencywasobtained.Asanexample,weapproximatedtheaveragespectraleffi-ciencyofacodeccontainingeight4-Dtrelliscodes(seeFig.3).Theaveragespectralefficiencymaybeincreasedifweusemorecircularversionsofthelargesignalconstellations.Amoderateshapinggainmayalsobeobtainedbyutilizingextendedcon-stellationsandasimpleblockcode[14].Byturningtheshapingonandoff,itispossibletoincreasethespectralefficiencyinstepsof0.5[bits/s/Hz]insteadof1[bits/s/Hz]ashasbeendoneinthispaper.Theexamplecodecutilizeseightnested2-Dsignalconstella-tionswithfourormoresignalpoints(seeFig.1).TherelativelyThereexistotherconstellationswith8pointsthathavesmalleraverageen-ergythan8-STAR.Unfortunately,theseconstellationsarenotsubconstellationsofthelargerconstellationsinFig.1. Fig.3.Averagespectralefficiency(bits/s/Hz)ofexamplecodecfortargetBER =10 Fig.4.DifferencebetweenMASE(bits/s/Hz)andaveragespectralefficiency(bits/s/Hz)ofexamplecodecfortargetBER =10 largeaverageenergyofthe8-STARconstellationresultedinalargerdifferencebetweentheMASEandtheobtainedaveragespectralefficiencyforsmallCNR’s(seeFig.4).Theextralossinaveragespectralefficiencyincurredbythe8-STARcodeisnotdramatic.However,wedonotrecommendthatitisusedinarealcodec.AninterestingalternativetoourexamplecodecisacodecbasedonUngerboeck’s2-Dtrelliscodeswith16states[17].Thesecodeshave whileourcodeshave Unfortunately,Ungerboeck’scodeshaveonly180 invariance.Ourcodes,ontheotherhand,canbemadetrans-parentto90 ,180 ,and270 phaserotationsofthesignalcon-stellationsbyintroducingadifferentialencoderandadifferen-tialdecoder.Hence,theexamplecodeceliminatestheneedforacoherentphasereference[18].AlouiniandGoldsmith[2]showedthataslongastheinfor-mationratecanbevaried,onlyaverymodestincreaseinMASEisobtainedbyalsovaryingthetransmitpower.TheyconcludedthattheinformationrateadaptionratherthanthetransmitpoweradaptionisthekeytoincreasingtheaveragespectralefficiencyonNMFchannels.However,eventhoughverylittleisgainedVariable-ratecodecscontainingUngerboeckcodeswith4,8,32,and128stateswereinvestigatedin[4]. 1158IEEEJOURNALONSELECTEDAREASINCOMMUNICATIONS,VOL.18,NO.7,JULY2000intermsofMASEbyvaryingthetransmitpower,thisdoesnottellusanythingabouthowtobestachieveanaveragespectralefficiencyclosetotheMASE.Aninformalcomparisonofplotsinthispaperandplotsin[4]for (Rayleighfading)in-dicatesthatmorecodesareneededtoachieveagivenaveragespectralefficiencywhenthetransmitpowerisfixedthanwhenthepowerisallowedtovary.Theaboveresultfor4-Dcodes,aswellastheresultsobtainedbyGoldsmithandChua[4]for2-Dcodes,indicatethat,forroughlythesamehardwarecomplexity,variable-rateTCMmayachievehigheraveragespectralefficiencythanmanyfixed-ratetrelliscodes.However,beforethesespectralefficienciescanbeobtainedinpractice,moreworkisneededtodeterminenewchannelestimationtechniquesthatwillallowtheadaptivecodingschemetomeetBERspecificationswithimperfectchannelestimationandnonzerofeedbackdelay.Someinterestingpreliminaryresultsinthisdirectionmaybefoundin[19].Weendthispaperwithacommentonthetimedelayinthefeedbackchannel.Goeckel[20]hasrecentlyshownthattheoutputBERofanadaptivecodingschememayincreaserapidlywithgrowingdelayinthefeedbackchannel.Wehaveassumedthatthefeedbackdelayiszero.MoreworkisthereforeneededtodeterminetheBERperformanceofouradaptivecodingschemefornonzerofeedbackdelay.CKNOWLEDGMENTTheauthorswouldliketothanktheanonymousreviewersformanyhelpfulsuggestionsthatconsiderablyimprovedthispaper.[1]A.J.GoldsmithandP.P.Varaiya,“Capacityoffadingchannelswithchannelsideinformation,”IEEETrans.Inform.Theory,vol.43,pp.1986–1992,Nov.1997.[2]M.-S.AlouiniandA.J.Goldsmith,“CapacityofNakagamimultipathfadingchannels,”inProc.47thIEEEVeh.Technol.Conf.(VTC’97)Phoenix,AZ,May1997,pp.358–362.[3]A.J.GoldsmithandS.-G.Chua,“Variable-ratevariable-powerMQAMforfadingchannels,”IEEETrans.Commun.,vol.45,pp.1218–1230,October1997. ,“Adaptivecodedmodulationforfadingchannels,”IEEETrans.,vol.46,pp.595–602,May1998.[5]J.Ventura-Traveset,G.Caire,E.Biglieri,andG.Taricco,“Impactofdiversityreceptiononfadingchannelswithcodedmodulation—PartI:Coherentdetection,”IEEETrans.Commun.,vol.45,pp.563–572,May[6]V.K.N.LauandM.D.Macleod,“VariablerateadaptivetrelliscodedQAMforhighbandwidthefficiencyapplicationsinRayleighfadingchannels,”inProc.48thIEEEVeh.Technol.Conf.(VTC’98),Ottawa,Canada,May1998,pp.348–351.[7]M.-S.AlouiniandA.J.Goldsmith,“AdaptiveM-QAMmodulationoverNakagamifadingchannels,”inProc.6thCommun.TheoryMiniconf.(CTMCVI),Phoenix,AZ,Nov.1997,pp.218–223.inconjunctionwithIEEEGlobalCommun.Conf.(GLOBECOM’97)[8]G.L.Stüber,PrinciplesofMobileCommunication.Norwell,MA:KluwerAcademic,1996.[9]H.Viswanathan,“CapacityofMarkovchannelswithreceiverCSIanddelayedfeedback,”IEEETrans.Inform.Theory,vol.45,pp.761–771,Mar.1999.[10]I.S.GradshteynandI.M.Ryzhik,TableofIntegrals,Series,andProd-,5thed.SanDiego,CA:Academic,1994.[11]G.D.Forney,Jr.,R.G.Gallager,G.R.Lang,F.M.Longstaff,andS.U.Qureshi,“Efficientmodulationforband-limitedchannels,”IEEEJ.Select.AreasCommun.,vol.2,pp.632–647,Sept.1984.[12]S.B.Wicker,ErrorControlSystemsforDigitalCommunicationandStorage.EnglewoodCliffs,NJ:Prentice-Hall,1995.[13]N.M.Temme,SpecialFunctions—AnIntroductiontotheClassicalFunctionsofMathematicalPhysics.NewYork:Wiley,1996.[14]L.-F.Wei,“Trellis-codedmodulationwithmultidimensionalconstella-IEEETrans.Inform.Theory,vol.33,pp.483–501,July1987.[15]D.J.Costello,Jr.,J.Hagenauer,H.Imai,andS.B.Wicker,“Applica-tionsoferror-controlcoding,”IEEETrans.Inform.Theory,vol.44,pp.2531–2560,Oct.1998.[16]W.CheneyandD.Kincaid,NumericalMathematicsandComputing2nded.Monterey,CA:Brooks/ColePublishing,1985.[17]G.Ungerboeck,“Trellis-codedmodulationwithredundantsignalsets—PartII:Stateoftheart,”IEEECommun.Mag.,vol.25,pp.12–21,Feb.1987.[18]M.D.Trott,S.Benedetto,R.Garello,andM.Mondin,“Rotationalin-varianceoftrelliscodes—PartI:Encodersandprecoders,”IEEETrans.Inform.Theory,vol.42,pp.751–765,May1996.[19]T.Eyceoz,A.Duel-Hallen,andH.Hallen,“Deterministicchannelmod-elingandlongrangepredictionoffastfadingmobileradiochannels,”IEEECommun.Lett.,vol.2,pp.254–256,Sept.1998.[20]D.L.Goeckel,“Adaptivecodingfortime-varyingchannelsusingout-datedfadingestimates,”IEEETrans.Commun.,vol.47,pp.844–855,June1999. KjellJ.Hole(S’89–M’90)wasborninMolde,Norway,onJune1,1961.HereceivedtheB.Sc.,M.Sc.,andPh.D.degreesincomputersciencefromtheUniversityofBergen,Norway,in1984,1987,and1991,respectively.FromAugust1988toMay1990,hewasaVis-itingScholarinProf.J.K.Wolf’sgroupattheCenterforMagneticRecordingResearchattheUniversityofCalifornia,SanDiego.During1993,heworkedinDr.P.Siegel’sgroupatIBMAlmadenResearchCenter,SanJosé,CA.Since1995,hehasbeenaResearchScientistattheUniversityofBergenwithfundingfromtheNorwegianResearchCouncil.Hiscurrentresearchinterestsareintheareasofcodingtheoryandwire-lesscommunications. HenrikHolm(S’96)wasborninSarpsborg,Norway,onJanuary25,1972.HereceivedtheM.Sc.degreeinelectricalengineeringfromtheNorwegianUniversityofScienceandTechnology(NTNU)inIn1998,hejoinedtheDepartmentofTelecom-municationsatNTNUasaResearchFellow,andheiscurrentlyworkingtowardthePh.D.degreeinelectricalengineering.Hismainresearchinterestiscodingandmodulationtechniquesforwireless GeirE.ØienwasborninTrondheim,Norway,onDecember29,1965.HereceivedtheM.Sc.andPh.D.degreesinelectricalengineeringfromtheDepartmentofTelecommunicationsattheNorwegianInstituteofTechnology,Norway,in1989and1993,respectively.FromAugust1994toAugust1996,hewasanAssociateProfessorinsignalprocessingattheStavangerCollegeinStavanger,Norway.InAugust1996,Dr.ØienbecameanAssociateProfessorininformationtheoryattheDepartmentofTelecom-municationsattheNorwegianUniversityofScienceandTechnology(NTNU),Trondheim,Norway.HeservedasPresidentfortheNorwegianSignalPro-cessingAssociation(NORSIG)intheperiod1997–1999.Hiscurrentresearchinterestsareintheareasofinformationtheoryandwirelesscommunications.