/
Time scale of thermal Time scale of thermal

Time scale of thermal - PDF document

teresa
teresa . @teresa
Follow
343 views
Uploaded On 2021-10-01

Time scale of thermal - PPT Presentation

conductionXiaoshan XuThe importance of thermal conductioneEnergy consumptionetransfer through conductioneEnergy generationeThermoelectric effect Seebeckeffect eSpin SeebeckeffectHot reservoirCold rese ID: 891910

energy xd835df15 time xd835dc34 xd835df15 energy xd835dc34 time xd835dc61 xd835dc40 xd835df0c unit diffusion xd835dc49 heat thermal conduction xd835df0f equation

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Time scale of thermal" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 Time scale of thermal conduction Xiaosh
Time scale of thermal conduction Xiaoshan Xu The importance of thermal conduction e Energy consumption: e transfer through conduction e Energy generation: e Thermoelectric effect ( Seebeck effect) e Spin Seebeck effect Hot reservoir Cold reservior Δ ܸ Basics of thermal conduction Heat Conductivity in Solids ( an example for irreversibility ) Re

2 member: Heat is an energy transferred fr
member: Heat is an energy transferred from one system to another because of temperature difference System  1 System  2 T 1 � T 2 Heat Q flows from  1 to  2 Example of irreversible process: Heat conduction Heat reservoir  1 Heat reservoir  2 T 1 � T 2 L T(x) x T 1 T 2 0 L * ( in the textbook T 2 �T 1 ) Heat

3 transfer per time interval through homog
transfer per time interval through homogeneous solid object: where K: thermal conductivity of the rod A: cross - section of the rod A L Example of irreversible process: heat conductions as a non - equilibrium process: Diffusion (time and space dependence of matter/energy) T(x) x T 1 T 2 0 L ܮ → ∆ ݔ ܶ 2 − ܶ 1 → ∆ ܶ ܵ ݔ , ݐ = − ܭ

4 �ܶ ݔ , ݐ �ݔ De
�ܶ ݔ , ݐ �ݔ Define flux: ܵ = lim Δ � → 0 ܳ � ∆ ݐ Fourier’s law Diffusion (time and space dependence of matter/energy) ݑ ( ݔ , ݐ ) , Ü· A ݔ ݔ + ∆ ݔ Continuity equation: �ݑ ݔ , ݐ �ݐ = − �ܵ ݔ , ݐ �ݔ ܵ ( ݔ , ݐ ) ܵ ( ݔ + ∆ ݔ , ݐ

5 ) � ܵ ݔ + ∆ ݔ , ݐ − Ü
) � ܵ ݔ + ∆ ݔ , ݐ − ܵ ݔ , ݐ ∆ ݐ = − [ ݑ ( ݔ , ݐ + ∆ ݐ ) − ݑ ( ݔ , ݐ ) ] � ∆ ݔ � : flux (energy flow per unit area per unit time, similar to electric current) � : energy density (energy per unit volume) How would energy change in the system? ܵ ݔ + ∆ ݔ , ݐ − ܵ ݔ , ݐ âˆ

6 † ݔ = − ݑ ݔ , ݐ + ∆ ݐ − ݑ ݔ
† ݔ = − ݑ ݔ , ݐ + ∆ ݐ − ݑ ݔ , ݐ ∆ ݐ ܵ ݔ , ݐ = − Ü­ �ܶ ݔ , ݐ �ݔ �ݑ ݔ , ݐ �ݐ = − �ܵ ݔ , ݐ �ݔ ݑ ( ݔ , ݐ ) , Ü· A ݔ ݔ + ∆ ݔ ܵ ( ݔ , ݐ ) ܵ ( ݔ + ∆ ݔ , ݐ ) Flux across a boundary Energy change in a system Diffusion (time and space depende

7 nce of matter/energy) Diffusion (time an
nce of matter/energy) Diffusion (time and space dependence of matter/energy) ݑ ( ݔ , ݐ ) , Ü· A ݔ ݔ + ∆ ݔ ܵ ( ݔ , ݐ ) ܵ ( ݔ + ∆ ݔ , ݐ ) � : flux (energy flow per unit area per unit time, similar to electric current) � : energy density (energy per unit volume) To study temperature distribution. Ü· = Ü· 0 + ඃ

8 5DF15;Ü· �ܶ � ∆
5DF15;Ü· �ܶ � ∆ ܶ = Ü· 0 + ܯܿ � � ∆ ܶ ݑ = Ü· ( ݐ ) ܸ = Ü· 0 ܸ + ܯܿ � � ∆ ܶ ܸ = ݑ 0 + � Ü¿ � � ∆ ܶ �ݑ ݔ , ݐ �ݐ = − �ܵ ݔ , ݐ �ݔ ݑ − ݑ 0 = ∆ ݑ = � Ü¿ �

9 � ∆ ܶ �ݑ ݔ ,
� ∆ ܶ �ݑ ݔ , ݐ �ݐ = � Ü¿ � � �ܶ ( ݔ , ݐ ) �ݐ �ܵ ݔ , ݐ �ݔ = − � Ü¿ � � �ܶ ( ݔ , ݐ ) �ݐ Continuity equation: Diffusion (time and space dependence of matter/energy) ݑ (

10 ݔ , ݐ ) , ܷ A ݔ ݔ + ∆ ݔ ܵ ( ݔ
ݔ , ݐ ) , Ü· A ݔ ݔ + ∆ ݔ ܵ ( ݔ , ݐ ) ܵ ( ݔ + ∆ ݔ , ݐ ) � : flux (energy flow per unit area per unit time, similar to electric current) � : energy density (energy per unit volume) From continuity equation From Fourier’s law ܵ ݔ , ݐ = − Ü­ �ܶ ݔ , ݐ �ݔ � ௌ ௫ , �

11 DC61; �௫ = − Ü­ �
DC61; �௫ = − Ü­ � 2 ் ௫ , � � ௫ 2 (2) Take � �௫ �ܶ ( ݔ , ݐ ) �ݐ = ܦ � 2 ܶ ݔ , ݐ � ݔ 2 �ௌ ௫ , � �௫ = − � Ü¿ � � �் ( ௫ , �

12 ) �� (1) ܦ = ܭ
) �� (1) ܦ = Ü­ � Ü¿ � � diffusivity Diffusion equation Application of Diffusion Equation (Decay of a hot spot) �ܶ ( ݔ , ݐ ) �ݐ = ܦ � 2 ܶ ݔ , ݐ � ݔ 2 Diffusion equation ܶ ( ݔ , ݐ ) ܶ ݔ , ݐ = ܶ 0 + � ݐ + ݐ 0 exp − ݔ 2 4ܦ

13 ݐ + ݐ 0 ܶ ݔ , 0 = ܶ 0 + �
ݐ + ݐ 0 ܶ ݔ , 0 = ܶ 0 + � � 0 exp ( − ௫ 2 4� � 0 ) Gaussian peak. ܶ ݔ One of the solution (example): Describes how the spatial distribution evolves with time. Application of Diffusion Equation (Decay of a hot spot) ܶ ( ݔ , ݐ ) ܶ = ܶ 0 + � ௪ exp ( − ௫ 2 ௪ 2 � ) ,

14 ݓ ݐ = 4ܦ ( ݐ + ݐ 0 ) Spatial depe
ݓ ݐ = 4ܦ ( ݐ + ݐ 0 ) Spatial dependence at ݐ : ܶ ݔ ݐ 0 ݐ 2 ݐ 1 ݐ 3 Spatial evolution with time: 1) Peak becomes broader 2) Total area is conserved (energy conservation ܷ݀ = ݀ܶ ). �ܶ ( ݔ , ݐ ) �ݐ = ܦ � 2 ܶ ݔ , ݐ � ݔ 2 Scaling rule of the decay ܶ ݔ , ݐ = ܶ 0 + �

15 ݐ + ݐ 0 exp − ݔ 2 4ܦ ݐ + ݐ 0 = Ü
ݐ + ݐ 0 exp − ݔ 2 4ܦ ݐ + ݐ 0 = ܶ 0 + � ݐ 0 1 + ݐ ݐ 0 exp − ݔ 2 4ܦ ݐ 0 1 + ݐ ݐ 0 If we use ݐ 0 as the unit, and let � = � � 0 , we get a universal relation ܶ ݔ , ݐ = ܶ 0 + � 1 + � exp − ݔ 2 4ܦ 1 + � So the decay scales with ݐ 0 Scaling rule of

16 the decay Since the decay scales with
the decay Since the decay scales with ݐ 0 , it scales with the � 2 . ܶ ݔ , 0 = ܶ 0 + � � 0 exp ( − ௫ 2 4� � 0 ) � 2 = 2ܦ ݐ 0 ܶ ݔ 2� Another view using analogy to circuits Thermal conduction is like discharging a capacitor, the time constant is � = Ü

17 ´Ü¥ hot cold For thermal conduction, we
´Ü¥ hot cold For thermal conduction, we use the same formula � = Ü´Ü¥ Ü´ = ݀ �� Ü¥ = Ü¿ � �ܸ = Ü¿ � � �݀ � : thermal conducitivity ݀ : thickness � : area � : density Ü¿ � : specific heat So � = Ü´Ü¥ = ݀

18 �� ܿ �
�� Ü¿ � ��݀ = Ü¿ � � � � ૛ ݀ Again, this scales with width 2 . Some hands - on data A simple experiment Less More Time scale in thin films t (ns) ݐ / ݀ 2 (ns/nm 2 ) For the previous water cooling experiment: � / � ૛ = Ø

19 35DFCE; . ��૜ (n
35DFCE; . ��૜ (ns/nm 2 ) � = 1080 s ݀ = 2 cm Laser pulse Film S ubstrate 20 nm 50 nm 20 nm 50 nm 35 nm Conclusion e We discussed the scaling rule of the thermal conduction, which is proportional to the thickness^2. e A few examples (microscopic and macroscopic) are given, which can be unified using the scaling ru