/
Manifold Dual Contouring Scott Schaefer Tao Ju Joe War Manifold Dual Contouring Scott Schaefer Tao Ju Joe War

Manifold Dual Contouring Scott Schaefer Tao Ju Joe War - PDF document

test
test . @test
Follow
477 views
Uploaded On 2015-05-21

Manifold Dual Contouring Scott Schaefer Tao Ju Joe War - PPT Presentation

We present an extension of Dual Contour ing that further guarantees that the mesh generated is a manifold even under adaptive simpli64257cation Our main contribution is an octreebased topologypreserving vertex clustering algorithm for adaptive conto ID: 71144

present extension

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Manifold Dual Contouring Scott Schaefer ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ManifoldDualContouringScottSchaefer,TaoJu,JoeWarren—DualContouringisafeature-preservingiso-surfacingmethodthatextractscrack-freesurfacesfrombothuniformandadaptiveoctreegrids.WepresentanextensionofDualContour-ingthatfurtherguaranteesthatthemeshgeneratedisamanifoldevenunderadaptivesimplication.Ourmaincontributionisanoctree-based,topology-preservingvertexclusteringalgorithmforadaptivecontouring.Thecontouredsurfacegeneratedbyourmethodcontainsonlymanifoldverticesandedges,preserves ofthegridisprocessed.Theiso-surfaceiscontouredusingMCandsimpliÞcationisbasedonedgecontractionsonthepolygonalsurface.ByenforcingtheÒlinkconditionsÓpro-posedbyDeyetal.[25]duringsimpliÞcation,thesimpliÞedsurfaceisalwaysmanifoldandpreservesthetopologyoftheoriginaliso-surface.WhileAttaliÕsmethodavoidsstoringtheentire,Þne-leveliso-surface,thespeedofthemethodremainsslowsincethisÞnesurfacestillsneedstobegeneratedandthensimpliÞed.Aswewillsee,ourtopology-preservingmodiÞcationtoDCsimpliÞesaniso-surfaceinmuchlesstimesincenopolygonisgenerateduntilafterthegridissimpliÞed.III.CONTOURINGONAUNIFORMGRIDWestartbydescribingasimplemodiÞcation,ÞrstproposedbyNielson[13],totheoriginalDCalgorithm[3].OneofthelimitationsofDCisthatitallowsnomorethanonevertexwithineachgridcell.Onauniformgrid,DCleadstonon-manifoldverticesandedgesforalloftheambiguoussignconÞgurationsintheoriginalMarchingCubesalgorithm[1].Tocombatthiseffect,NielsonÕsmodiÞcationallowsmultipleverticestobeplacedinasinglecell.Inparticular,NielsonassociatesonevertexwitheachcycleofamodiÞedMarchingCubestable[26].Sinceeachcycleconsistsofalistofedgesonthecubiccell,eachvertexisassociatedwithasetofedgesandeachedgeisassociatedwithexactlyonevertex.Tocreatepolygons,thealgorithmconstructsonepolygonconnectingtheverticesassociatedwiththatedgeinthefouradjacentcells.ThisalgorithmcreatesaquadrilateralsurfacethatisthedualofthesurfacecreatedusingMarchingCubes(andwasthereforegiventhenameÒDualMarchingCubesÓ).Furthermore,thissurfaceisalwaysamanifoldbecausetheoriginalMarchingCubesalgorithmalwaysconstructsamanifoldandthedualpreservesthetopologyofthesurface.OneoftheadvantagesofDCoveratraditionalcontouringmethod,suchasMarchingCubes,isitscapabilityofrepro-ducingsharpfeaturesinthepresenceofHermitedata.ToincorporateHermitedataintoNielsonÕsDualMarchingCubesalgorithm,wesimplyconstructaQuadraticErrorFunction(QEF)[11]foreachvertexusingtheHermitedataontheedgesassociatedwiththatvertex.Weplacethisvertexatthelocationthatminimizesthaterrorfunction.Figure2showsacomparisonin2Dofthedifferentmethods.MarchingCubesalwaysproducesamanifoldbutdoesnotreproducesharpfeatures.DualContouringreproducessharpfeaturesbutthetopologymaybenon-manifoldinsomecon-Þgurations.TheHermiteextensiontoDualMarchingCubesalwaysproducesatopologicalmanifoldandcanreproducesharpfeaturesaswell.IV.ADAPTIVECONTOURINGIntheprevioussection,weconsideredconstructingmanifoldiso-surfacesfromuniformgridsthatpreservessharpfeatures.However,formodelswithrelativelyßatregions,theuniformcontouringalgorithmproducesalargenumberofpolygons (a)(b) (c)(d)Fig.2.Comparisonofcontouringwithhermitedata.Cellwithhermitedataonedges(a),MarchingCubes(b),DualContouring(c)andHermiteDualMarchingCubes(d).coveringtheseßatregions.Ideallythecontouringalgorithmwouldextractasurfacewherethenumberofpolygonsadaptstothelocalpropertiesofthesurface(i.e;fewerpolygonsinßatregions).DCprovidessuchanalgorithmtoconstructmulti-resolutioniso-surfaces.Themethodessentiallyperformsvertexclusteringwheretheverticesofthechildcellsintheoctreecollapsetoasinglevertexinatopologicallysafemanner.However,sinceonlyonevertexwasallowedper-cellinDC,thecollapsewasveryrestrictive.HerewedevelopanewcontoursimpliÞcationmethodviaoctree-basedvertexclustering,whichallowsforanarbitrarynumberofverticespercell.Furthermore,wedescribeapolygongenerationalgorithmforconstructingsurfacesfromtheseadaptivelyclusteredvertices.A.VertexclusteringGivenanerrorthreshold,thevertexclusteringphasecreatesavertextreestartingwiththeverticesattheÞnestleveloftheoctree.EachvertexcontainsaparentpointeraswellastheQEFassociatedwiththisvertexandthevalueoftheQEFevaluatedatthisvertex(i.e;theerrorassociatedwiththisvertex).Furthermore,avertexismarkedasbeingiftheerrorassociatedwiththevertexislessthanourgiventhreshold.Initially,weßagallverticesascollapsibleandsettheirparentindicestoNULL.Whensimplifyingtheoctree,weonlyclusterverticestogetherthataretopologicallyconnectedonthesurface.NotethatthisapproachissimilartoZhangetal.[7],butitisnotsufÞcienttoguaranteethatwemaintainthemanifoldpropertiesofthesurfaceundersimpliÞcation(whichwillbeaddressedinSectionV). 6 (a)(b)(c)Fig.7.(a):Aspringmodelcontouredonauniformgrid.(b):Amodelsim-pliÞedusingourmethodallowseachsurfacetobesimpliÞedindependently.(c):DualContouringrestrictssimpliÞcationevenforseparatesurfaces.foraclusteredvertex,weobservethatthesurfacetheunionofsurfacesaretheverticesclusteredtogethertoformfromthechildcellsof.Tocompute,wesimplysumthenumberofintersectionsofeachalongedgesof,shownasthinlinesinFigure6(bottom).WecancomputeinanequallyefÞcientmannerusinganinductiveformulathatrelates(seeproofinAppendixII): denotesthesumofthenumberofintersectionsalongtheinternaledgesof,shownasthickenedlinesinFigure6(bottom).Figure6showsanexamplewhere(bottom)isbuiltfromtensurfaces(top).ForeachchildcellwedisplaythequantitiesforeachinFigure6(top).Observethat10and36,andhence1byequation2,whichisthecorrectEulercharacteristicofthedisk-likesurfaceTointegratethetopologyconstraintintotheadaptivecontour-ingalgorithmintheprevioussection,werequirethatavertexiscollapsibleiftheassociatedQEFerrorisbelowthegivensatisfythetwoconditionsinProposition1.Figure4(c)showstheresultofadaptivecontouringwithtopologyconstraint,whichpreservesallthethreadsofthespider-webwithmanifoldverticesandedges.VI.RESULTSComparedwithothercontoursimpliÞcationalgorithmssuchastheoriginalDualContouringmethodortheextendedDualContouringmethodbyZhangetal.[7],ouralgorithmismuchlessrestrictiveinthetypesofsimpliÞcationsallowed.First,multiplecontourcomponentswithinasameoctreecellsimplifyinanindependentmanner,henceallowingßatregionstomaximallycollapseevenifinthevicinityofothergeometry(seeFigure7).Second,unlike[7],ourmethodputsnorestrictiononthenumberofcontourintersectionsoneachoctreecelledge,asourvertextreeisseparatefromtheoctree.Thisallowsustosimplifymultiplelayersofthingeometry.A2DexampleisshowninFigure8,whereourproposedmethodiscapableofsimplifyingnearbylayersofcontoursmuchbetterthanbothDCandExtendedDualContouring[7]. (a)(b) (c)(d)Fig.8.ComparisonbetweenDualContouring(b),ExtendedDualContouring[7](c),andtheproposedManifoldDualContouring(d)insimplifyinga2Dcontour(a).Verticesandedgesonthecontouraredrawnasrounddotsandlines,andoctreecellsinwhichtheclusteredverticesareformedareshown.Furthermore,mostcontoursimpliÞcationalgorithms[3],[7]stopsimplifyingsurfacecomponentsassoonasanunsafesimpliÞcationisencountered,whichlimitstheamountofsimpliÞcationpossible.Incontrast,ourmanifoldcriterionmaybeabletodeterminethatasafesimpliÞcationoccurslaterinvertexclusteringevenifunsafecollapsesoccurredpreviously.ThismethodallowsforextremesimpliÞcationswhereevenverydensemodelssuchasFigure9collapsetoextremelysimpleshapes.Figures10and11showtwoothercomplexscannedmodelsthathavebeensimpliÞedusingourmethodbyvaryingtheerrorthreshold(thehermitevolumerepresentationsofeachmodelwereobtainedusingthePolyMendertool[10]).Eachmodelistopologicallyequivalentto(i.e,havingthesamegenusas)theoriginalanddoesnotcontainanynon-manifoldedgesorvertices.Oneattractivefeatureofourvertexclusteringalgorithmisthat,oncethevertextreeisconstructed,simpliÞedpolygonscanbegeneratedefÞcientlyoffthevertextreegivendifferentuser-speciÞedQEFerrorthresholds.ThisisdonesimplybyrevisingtheÒcollapsibleÓtagofeachclusteredvertexaccordingtothenewerrorthreshold,andthereisnoneedtorebuildthevertextree.Incontrast,methodsthatÞrstbuildtheÞne-levelcontourfollowedbymeshsimpliÞcation(suchas[24])wouldneedtore-runtheentiresimpliÞcationprocesswhentheerrorthresholdischanged.Suchfeatureofouralgorithmcouldbeuseful,forexample,inrealtimenavigationofacomplexvolume.Intheseapplications,theQEFerrorthresholdsarehigherinoctreecellsthatarefurtherawayfromtheviewerÕslocation,resultinginmoredetailedgeometryintheviewerÕsvicinityandcoarserpolygonsatdistances.Figure12shows 8 Octree Base ClusteringTime(sec) ClusteringTime(sec) Polygon SimpliÞed Depth Polygons Without With Generation Polygons ManifoldCriterion ManifoldCriterion Time(sec) Fig7 6 28740 0.254 0.259 0.060 1042 Fig4 7 44784 0.459 0.465 0.097 3672 Fig9 9 476184 5.58 5.76 1.12 78 Fig10 9 611476 6.65 6.71 1.42 9944 Fig11 9 878368 10.89 10.99 2.01 30002 TABLEIIMPLIFICATIONTIMEINSECONDSFORTHEVARIOUSSTAGESLUSTERINGANDOLYGONENERATIONCOMPARINGCLUSTERINGWITHANDWITHOUTTHEMANIFOLDCRITERION (a)(b)(c)(d)Fig.12.SimplifyingthecontourbasedontwodifferentviewerÕslocations(markedasbluedots),nearthehead(a,b)andnearthebase(c,d),shownwithpolygonedges(a,c)andwithoutedges(b,d).NotethatthesurfacefurtherawayfromtheviewpointissimpliÞedmore.VII.CONCLUSIONSANDWehavepresentedanextensiontoDualContouringthatpreservessharpfeaturesandalwaysconstructsamanifoldsurface.Furthermore,wedevelopedasimplecriterionforvertexclusteringinanoctreethatisguaranteedtopreservethegenusoftheoriginalsurfaceandalwaysproducea2-manifoldwithoutanynon-manifoldverticesoredges.Thoughthesurfacesweproducearetopologicallymanifold,theymaystillcontainintersectingpolygons.Forexample,inourHermiteextensiontoNielsonÕsDualMarchingCubesalgorithm,wemayplacemultipleverticesinsideofacell.ItispossiblethattheHermitedataalongthecelledgescausestheverticestobepositionedsuchthatthesurfacesintersectwithinthecell.Notethatintersectingpolygonsmayariseevenwhenasinglevertexisplacedinsideacell,asobservedin[28].Asaresult,theoriginalDCalgorithmaswellasitsvariantsareallsubjecttosuchgeometricerrors.Anaiveapproachfordetectingintersectingpolygonsgener-atedbyDC-likemethodsinvolvestime-consumingneighbor-Þndingontheoctreeaseachpolygonspansmultipleoctreecells.Instead,[28]presentedanefÞcient,intersection-freemodiÞcationtotheoriginalDCmethodbydevisingasetofsimplegeometricteststoidentifypotentiallyintersectingpoly-gons,whicharethentessellatedintosmaller,non-intersectingtriangles.Whilethemethodof[28]isrestrictedtosinglevertexperoctreecell,inthefuturewewouldliketoextendsuchmethodandexplorecriteriaforplacingmultipleverticeswithinacellthatbothreproducessharp-featuresandavoidsintersectionsevenunderadaptivesimpliÞcation.GiventhatthesimpliÞediso-surfaceusingourapproachpreservesthetopologyoftheoriginalmodel,aninterestingdirectionthatworthinvestigatingishowourmethodcanbecombinedwithtopology-repairalgorithmsforlargemeshes,andinparticular,thegrid-basedmethodssuchas[29],[30].WeanticipatethatageometricallysimpliÞedyettopologicallyequivalentsurfacewouldgreatlyacceleratetheprocessoflocatingtopologicalerrorsinthesemethods.AcknowledgementsWewouldliketothanktheStanford3DScanningRepositoryfortheDragonandThaiStatuemodels,CindyGrimmfortheSpider-webmodel,andVanDuzanfortheQueenmodel.Wewouldalsoliketothanktheanonymousreviewersfortheircommentsandsuggestions.[1]W.E.LorensenandH.E.Cline,ÒMarchingcubes:Ahighresolution3dsurfaceconstructionalgorithm,ÓinComputerGraphics(ProceedingsofSIGGRAPH87),vol.21,no.4,Anaheim,California,July1987,pp.[2]L.P.Kobbelt,M.Botsch,U.Schwanecke,andH.-P.Seidel,ÒFeature-sensitivesurfaceextractionfromvolumedata,ÓinProceedingsofSIG-GRAPH2001,ser.ComputerGraphicsProceedings,AnnualConferenceSeries.ACMPress/ACMSIGGRAPH,August2001,pp.57Ð66.[3]T.Ju,F.Losasso,S.Schaefer,andJ.Warren,ÒDualcontouringofhermitedata,ÓACMTransactionsonGraphics,vol.21,no.3,pp.339Ð346,July2002,iSSN0730-0301(ProceedingsofACMSIGGRAPH[4]R.Shekhar,E.Fayyad,R.Yagel,andJ.F.Cornhill,ÒOctree-baseddecimationofmarchingcubessurfaces,ÓinVISÕ96:Proceedingsofthe7thconferenceonVisualizationÕ96.LosAlamitos,CA,USA:IEEEComputerSocietyPress,1996,pp.335Ðff. 10 (a)(b)(c)Fig.13.Centerplanesofacell(a),centerlinesofacell(b),centerlinesofeachcellface(c).Next,as istheunionofall ,weconsiderasthesetofverticesandedgesthatarecontainedinmorethanone Thekeyobservationisthatliesonthe12internalfacesoftheoctreecell(seeFigure13(a)).Furthermore,weusetodenoterespectivelythesetofverticesinlyingonthecenterlinesof(seeFigure13(b))andonthecenterlinesoffacesof(seeFigure13(c)).Observethateachvertexiniscontainedinexactly4 ,whereaseachotherelementofiscontainedinexactly2 .Accordingtoformula1, Svk( ))+Ontheotherhand,sinceeach isa2-manifold,avertexiscontainedinexactly2edgesofexceptforthoseverticesin,eachcontainedin4edges,andthoseineachcontainedin1edge.Hencewehave,))+Substitutingequation4intoequation3yields Svk( Svk)2V(MfvV(Mcv) Equation5yieldsequation2,because Sv),(Svk( ,andeachvertexincontributestooneedgeintersectioninfor2and4 ScottSchaeferisanAssistantProfessorintheCom-puterSciencedepartmentatTexasA&MUniversity.HegraduatedfromTrinityUniversityin2000withaB.S.degreeinComputerScienceandMathematics,receivedanM.S.degreefromRiceUniversityin2003andaPh.D.fromRiceUniversityin2006.HisresearchinterestsincludeComputerGraphics,GeometricModelingandScientiÞcVisualization. TaoJugraduatedfromTsinghuaUniversityin2000withaBAdegreeinEnglishandaBSdegreeinComputerScience.HereceivedhisPh.DdegreeinComputerSciencefromRiceUniversityin2005.TaoiscurrentlyanassistantprofessorintheDepartmentofComputerScienceandEngineeringatWashing-tonUniversityinSt.Louis.Hisresearchinterestsareintheareasofmeshprocessing,visualization,geometricmodeling,andbiomedicalapplications. JoeWarren,aProfessorofComputerScienceatRiceUniversity,isoneoftheworldÕsleadingex-pertsonsubdivision.Hehaspublishednumerouspapersofthistopicanditsapplicationstocomputergraphics.ThesepublicationshaveappearedinsuchforumsasSIGGRAPH,TransactionsonGraphics,Computer-AidedGeometricDesignandTheVisualComputer.Hehasalsoorganizedandparticipatedinanumberofinternationalworkshops,shortcoursesandminisymposiaonthetheoryandpracticeofsubdivision.ProfessorWarrenÕsrelatedareasofex-pertiseincludecomputergraphics,geometricmodelingandvisualization.