/
O ptimization  of Shape Parameters for O ptimization  of Shape Parameters for

O ptimization of Shape Parameters for - PowerPoint Presentation

titechas
titechas . @titechas
Follow
345 views
Uploaded On 2020-08-28

O ptimization of Shape Parameters for - PPT Presentation

Radial Basis Functions Salome Kakhaia Mariam Razmadze Supervisors Ramaz Botchorishvili Tinatin Davitashvili Department of Mathematics Tbilisi State University 1 August 24 2018 ID: 809451

parameters rbf polynomial shape rbf parameters shape polynomial parameter function basis error smartlab measurements optimization interpolation optimized squared april

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "O ptimization of Shape Parameters for" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Optimization ofShape Parameters forRadial Basis Functions

Salome Kakhaia, Mariam Razmadze Supervisors - Ramaz Botchorishvili Tinatin DavitashviliDepartment of MathematicsTbilisi State University

1

August 24, 2018

Slide2

2Aim:

Define method for shape parameter Identification Improve accuracy of radial basis function InterpolationApplications for SmartLab measurements

Slide3

RBF - Radial Basis Function

- Euclidian distance

- centers

Gaussian RBF -

- shape parameters

RBF Interpolant, given by a linear combination :

 

=0.01

=0.001

 

3

Figure 1.

Slide4

Importance of the Shape Parameter

4Figure 1 :

Choosing Basis Functions and Shape Parameters for Radial Basis Function Methods Michael Mongillo October 25, 2011

Figure 1

Slide5

5 Individual Shape parameter for each basis

Problem and Data orientated Best approximation rate in mid points between nodesMore accurate Interpolation process

Optimization of Parameters 1D

Slide6

Error function

- exact

- gaussian RBF

RBF Centers

:

,

,

Taylor series expansion around

in terms of

:

*.. assumed :

.

for

 

 

 

 

 

 

6

 

 

Optimization of Parameters 1D

Slide7

 

7

Optimized Shape Parameters 1D

Slide8

Function Approximation 1D8

 

Mean Squared Error :

RBF (optimized parameters) - 0.0004

Polynomial - 0.0128

RBF (random parameters) - 0.0128

Slide9

9

SmartLab Measurements

Slide10

10

SmartLab Measurements

 

 

 

 

Real measured value in node

(7)

- 57.92

Predicted by RBF Interpolation - 57.23

Predicted by Polynomial - 61.22

No

2

April 13, 2018

Slide11

11

SmartLab Measurements

 

 

 

 

Real measured value in node

(7)

- 0.78

Predicted by RBF Interpolation - 0.89

Predicted by Polynomial - 0.91

CO

April 13, 2018

Slide12

12

ElementsMean squared Error

CONO2CH4

Real value

0.78

57.92

2.43

RBF

(optimized parameters)

0.8957.232.19Polynomial 0.9161.222.17RBF (random parameter0.0001) 0.9161.252.17 ElementsMean squared ErrorCONO2CH4Real value0.7857.922.43RBF (optimized parameters)

0.8957.232.19

Polynomial 0.91

61.222.170.9161.252.17

SmartLab Measurements

Slide13

Taylor series expansion around

+

+

+

Optimization

condition :

+

 

13

 

 

 

 

 

 

Optimization of Parameter 2D

 

Slide14

 

For higher accuracy: add a new data location

Add a zero degree polynomial term to RBF interpolant

 

14

 

 

 

 

 

 

 

 

Optimization of Parameter 2D

Slide15

Optimised Shape Parameter 2D

Obtained :

=

-

error in

While:

=

-

error in

given by Polynomial Interpolation.

Achieved high order of convergence around the location

 

 

 

15

Slide16

 

Exact

RBF

Polynomial

16

Optimized Shape Parameter = -0.06

Mean Squared error over the area :

RBF - 0.286

Polynomial - 7.697

Function Approximation 2D

Slide17

Exact

RBF Polynomial

 

17

Function Approximation 2D

Optimized Shape Parameter = 0.246

Mean Squared Error over the area :

RBF - 0.002

Polynomial - 0.033

Slide18

18

CO

April 4, 2018

SmartLab Measurements 2D

Slide19

19

 

 

 

 

 

Assumption :

surface is flat and extra factors do not influence the results

SmartLab Measurements 2D

Slide20

20

Results in unmeasured locations

A

Polynomial

CO - April 4

th

, 19:20

Prediction of CO value in

A

location:

RBF Interpolation – 0.472Polynomial Interpolation – 2.222Rbf

Slide21

What if we add more parameters?While, Gaussian RBF has 1 shape parameter

Multiple variable shape parameters provide adaptive basisAdaptive basis can achieve higher order of accuracy based on optimizing parameters.

21

Multiple Variable Shape Parameters

Slide22

RBF transformationMultiple variable shape parameters

22Transformation :Circle

new shape :

has multiple shape parameters

 

Slide23

23

RBF transformation

Multiple variable shape parameters

results:

Slide24

References

A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method Jingyang Guo, Jae-Hun Jung

Radial basis function ENO and WENO finite difference methods based on the optimization of shape parameters

Jingyang

Guo, Jae-Hun Jung

Inventing the Circle

Johan

Gielis

Geniaal bvba , 2003.24

Slide25

Thank you !