/
Journal of Information Assurance and Security    Secure and Trusted innetwork Data Processing Journal of Information Assurance and Security    Secure and Trusted innetwork Data Processing

Journal of Information Assurance and Security Secure and Trusted innetwork Data Processing - PDF document

trish-goza
trish-goza . @trish-goza
Follow
536 views
Uploaded On 2014-12-03

Journal of Information Assurance and Security Secure and Trusted innetwork Data Processing - PPT Presentation

Maurice Donat 06250 Mougins France Emailnamesurnamesapcom Abstract Innetwork data processing in wireless sensor net works WSN is a rapidly emerging research topic The dis tributed processing could have several advantages for wireless sensor networks ID: 20127

Maurice Donat 06250 Mougins

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Journal of Information Assurance and Sec..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

190Sorniotti,Gomez,WronaandOdoricoapproachistoachievehop-by-hopencryptionandintegrityprotection.However,nodescanbecapturedandthedisclo-sureoftheirkeymaterialcanleadtothedisclosureofrawdataandpartialresults,ormaliciousmodi cationofdata.Inparticular,thepackagingofsensornodescanalsobeaf-fectedbythelow-costrequirements,notallowingfortamper-resistantdevices:hence,nodesmaybecapturedandtheirsecretmaterialcanbedisclosedtoanattacker.Toovercomethisproblem,techniquesareproposed,thatexploitend-to-endencryptioninconjunctionwithparticularkeydistribu-tionmechanisms,homomorphicencryptionschemesorpubliccryptographicschemes.Nevertheless,inordertomakesen-sornetworkseconomicallyviable,sensordevicesarelimitedintheirenergy,computationandcommunicationcapabilities;hencetheseschemeshavetotakeintoaccountthetechnicalandeconomicconstraints.Oncedatahasbeensensedandpossiblyprocessedbynodes,itmustbedeliveredtodatasinks,i.e.nodesthatareresponsibleforgatheringdataandpassingittoapplicationgateways.Applicationgatewaysarenodesthatareresponsi-bletodeliverdatatotherealpointofexploitation.Thesinknodesandgatewaysmaysu erconstitutesinglepointoffail-ure,giventhattheyarenormallymuchlessnumerousthanwirelessnodes.Sinksandgateways,beingtheeventualdes-tinationofdata,arealsotheperfectpointofattackinordertogetaccesstodata,modifyitorsupplyfalsedata.Coun-termeasurestosuchattacksincludemutualauthenticationofthegatewayandthenodes,ensuringthatboththegatewayisentitledtoreceivedataandthatthedataissentbylegitimatenodes.HigherlayersofaWSNdeploymentincludeamiddlewarelayerandanapplicationlayer.Inadditiontoprovidingim-portantfunctionalservice,WSNcanbeseenalsoasasourceofexternalriskstothemiddlewareandapplications,asnet-worklayercanbeusedasmeanstoattackthem.Astraight-forwardexamplecanbetheusageofacapturedsensornodetosupplyaparticularlycraftedinputtothemiddlewarelayer,inordertoexploitsoftwarevulnerabilitiessuchasbu erover- ows.Cross-layersecurityconsiderationsinWSNareoftenre-latedtothelimitedresourcesofsensornodesintermsofen-ergy,computationandcommunicationcapabilities.Wewanttostresshowever,thatthismightnotalwaysbetrue:indeedWSNscanalsobedeployedinscenariosthatjustifymorepowerfulnodes,e.g.inautomotive.Iflimitedresourcesisthecase,theneverylayercanbeexposedtoover-consumptionattacks.Suchdenialofserviceattacksdonotnecessarilyjustfocusondepletionofbatteries,butalsoofmemoryorcom-putationalresources.Thedepletionattacksnormallyaimatrequestingahugeamountofnon-legitimateworkbythesen-sornodesinsothattherearenoresourcesleftforlegitimaterequests.OtherriskscanbecategorizedasgeneralrisksassociatedwiththeusageofWSNs.Oneofthemistheso-calledfunc-tioncreep.Afunctioncreepiswhatoccurswhenanitem,process,orproceduredesignedforaspeci cpurposeendsupservinganotherpurposeforwhichitwasneverplannedtoperform.Forinstance,anubiquitouslydeployedWSNscanallowsecretsurveillance,whichwasnotplannedasoneoftheintendedusages.Theprotectionagainstsuchthreatisnotstraightforwardsincesurveillancecantakemanydi erentforms.Moreover,thecountermeasurescanrequireanimple-mentationandenforcementoflegalmechanismsandnotjusttechnicalsolutions.3TrustChallengesinWirelessSensorNetworkSensornodesusedintypicalWSNarenottamper-resistantdevices(63),mostlyduetothecostandpowerconstraints.Weakphysicalsecurityprotectionimpliesthatanattackercanrelativelyeasycaptureandanalyzenodesorintroducenewmaliciousnodes.Whenanodeiscompromised,allthecryptographicmaterialisdisclosedtotheattacker.Thisma-terialistypicallyusedforencryptionandauthenticationofexchangedsensordata.Bycapturingthecryptographicma-terial,theattackercangeneratenewmaliciouscodeinclud-ingpropercryptographicmechanisms.Theattackercanalsodisseminateforgedsensordatainaproperlyencryptedandauthenticatedmanner.HisobjectiveisoftentodisruptthenormalbehavioroftheWSNandcompromisein-networkdataprocessing.Dependingonhisstrategy,theattackercanin- uencein-networkdataprocessinginlong-termorinshortterm.Inthecaseoflong-termattacks,theattackercanaimatskewingin-networkdataprocessingwithoutbeingdetected.ItpermitshimtocontroltheWSNbehavior,andtoin uenceapplicationdecisionsbasedonin-networkdataprocessing.Inthecaseofshorttermattacks,theattackermightnotcareaboutbeingdetected,andaimatmakingtheWSNinopera-ble.Analternativeapproachtotheproblemofcompromisednodesconsistsofevaluatingtrustworthinessofsensordata.Whencollectingoraggregatingsensordata,weaimatcom-putingthedistancebetweentherealandthedeliveredsensorvalue.Thisdistanceisrelatedtosensorcharacteristics(e.g.accuracy,qualityofservice,resiliencetofailure),itsrepu-tationintheWSN,andthesensordatavalueitself.Fewapproacheshavebeenalreadyproposedintheliteraturefordeterminingthetrustworthinessofin-networkprocessingofsensordata.ThoseapproacheswillbediscussedinSection6.In-networkevaluationoftrustworthinessofsensordataisbased,e.g.,onprobabilitytheory.Thetrustinformationcanthusbeusedinordertodetermineifthesensordatashouldbeskippedorbeusedforfurtherdataprocessing.Unfortu-nately,thescalabilityofthoseapproachesisstillquestionable.Actually,theeciencyofthoseapproachesistightlyrelatedtothenumberofnodesinvolvedintheWSN.4SecurityandTrustPrimitivesInthissectionwewillintroducethebasicsecurityandtrustprimitivesthatareneededtoachievesecureandtrustedin-networkdataprocessing.SomeofthecommoncryptographicschemesarenotsuitableforWSNenvironmentduetothepar-ticularcharacteristicsofWSNs.Forinstance,limitedenergysupplycallsforusageoftheshortestpossiblekeysrequiredinordertoachievetheadequatelevelofsecurity.Thelackoftamper-resistancecallsformechanismswherethecaptureofintermediatenodesdoesnotallowtodiscloseallsensordata,orformechanismsfordeterminingthetrustworthinessofsensordata.The rstprimitivethatweintroduceisEllipticCurveCryp-tography(ECC).Ellipticcurvecryptographyisanapproachtopublickeycryptographybasedonthealgebraicstructureof 192Sorniotti,Gomez,WronaandOdoricoonaMICAznoderunningTinyOS.Theobtainedaverageex-ecutiontimetocomputeapairingwas30.21s.Thecostscon-cerningRAMandROM ashmemorywere1831and18384bytes,respectively.Guraetal.in(26)documentedtheirex-perimentswithanAtmelATmega128at8MHz.TheymadeacomparisonbetweenECCandRSAonthis8-bitCPUinordertoevaluatetheexecutiontimeandthememorycostfordi erentoperationswiththesetwoapproaches.Theyveri- edthata160-bitECCpointmultiplicationrequiresaroundhalfofthememoryspaceandasimilarexecutiontimeofaRSA-1024operation.TherelativeperformanceadvantageofECCpointmultiplicationoverRSAmodularexponentiationincreaseswiththedecreaseintheprocessorwordsizeandtheincreaseinthekeysize.ThetwomainparametersthatareusedtocharacterizeanECCsystemarethekeysizeandthesecuritymultiplier.Con-cerningthekeysize,formostPBCschemes(includingIBE)securityrequirementscanbesatis edbychoosingitequalto160bits.However,inWSNthesystemsecurityrequirementsareoftenrelaxed(51)inordertoincreaseeciency.Thisisoftenpossiblebecauseoftherelativelyshortsystemlifetime,especiallywhenthegoalisnottoprotecteachnodeindi-vidually,butthenetworkoperationasawhole.ThelargestbrokenEllipticCurveDiscreteLogarithmicProblemyethad109bitskeysizeoverthe nite eldF(2109)andittook17months(13)tobreakit.Instead,thelargestbrokenDis-creteLogarithmicProblemyethad160digitskeysize(33).Therefore,itseemsthateven128bitsECCkeysizeisabletosecuresensitiveinformationinsensornetworks.Forexample,in(3)acurveoverF(2113)waschosenasito ersabout16timesmoresecuritythan109bits,whichseemsenoughsecurityfortodayshardware.Batinaetal.(2)assumedintheirworkthatECCoverF(2131)providesagoodlevelofsecurityfortheirapplication.Thekeysizeisnottheonlyimportantparameter.Infact,duringthecreationofthesystemonecanchooseaspeci cvalueofK,alsocalledthesecuritymultiplierK.ThevalueofKiscrucialasallthepairingscomputationsareactuallygoingtobeperformedinE(Fpk),withEbeinganellipticcurvestudiedoverFpk.ApairingcanbecomputedecientlyifKissmall.Super-singularcurvesareaparticularkindofcurves,whichimposeasmallnumberofpossiblegroupstructuresanddependonthenumberofpointsintheE(Fpk).Supersingularcurves,althoughinthepastusedtobeavoidedincryptographybe-causetheyaremorevulnerabletosomespeci cattacks,letthesecuritymultiplierbeK6.Itisknownfrom(60)that,withK=2,1024bits nite eldisroughlyequivalentto512bitsonthecorrespondingellipticcurve.IfK=3,itisequivalentto340bits.IfKbecomesbig,theratioisnotthesame:1024bitssecurityon nite eldisnotequivalentto51bitsecurityonellipticcurves,itisratherequivalentto160bits.Fornon-supersingularcurves,Kcouldbegreater(10K50).Ifthesecurityparameterislargeitisgoodfromasecuritypointofview,becauseitisdirectlyproportionaltothesystemlevelofsecurity,butthecomputationwillbehard.ThechoiceofKthusdependsonthesetwoproperties.4.2PrivacyhomomorphismAprivacyhomomorphismisafamilyoffunctions(ek;dk; ; ),suchthatdk( (ek(m1);:::;ek(mr)))= (m1;:::;mr)foreachkeykinsomekeyspaceandforanyminsomemessagespace.Privacyhomomorphisms(PH)were rstintroducedin(54).TheauthorsalreadynoticedthatifagivenPHallowstoevaluatethepredicateandallowsanattackertogenerateencryptedversionsofconstants,thentheschemedoesnotprovidecon dentiality,asabinarysearchstrategycaneasilyrevealtheencryptedvalue.Althoughtheschemesproposedin(54)werebrokenin(7),PHshavebeensincethenanim-portantresearchtopic.ThetwomostcommonvariationsofPHsaretheadditivePHandthemultiplicativePH.Thelatterprovidestheprop-ertyek(m1m2)=ek(m1)ek(m2):WellknownexamplesofmultiplicativePHsareRSAandthediscretelogarithmElGamal.AdditivePHsprovidetheprop-ertyek(m1+m2)=ek(m1)ek(m2)andareusefulsincetheycanbeusedtocalculate,e.g.,theaveragevalue.A rstverysimplefamilyofprivacyhomomorphismsaresimplevariationsoftheone-timepadscheme.Anexampleofsuchschemeisek(x)=(x+k)modnThesecurityofsuchschemereliesontheonetimeuseofthekeyandnisapubliclyknownvalue.Althoughthisschemeisprovablysecure,itshouldbecomplementedwithmechanismstocreateasecurekeystreamthatmustbeusedonlyonce.ThisfamilyofPHschemesallowsthecomputationofthesumofencryptedvalues.AlargesubgroupofPHcryptographicalgorithmsisbasedonhighdegreeresiduosity(50).TheseschemesprovidetheadditivePH,butneedverylongkeysthatinturnimplylargemessagesandcomputatione ort.In(5)thepropertiesof nitebilineargroupswithcompositeorderareusedinordertoconstructanewschemethatallowstocomputeasinglemultiplicationontheencrypteddata,alongwithanarbitrarynumberofsums.AsymmetricPHschemewithboththeadditiveandthemultiplicativePHproperty,whichmakesitanalgebraicPH,wasintroducedin(18).Itisasymmetricalgorithmthatrequiresthesamesecretkeyforencryptionanddecryption.Theschemegeneratesavectorofdintegersthatsumuptothecleartextvalue;theseintegersarethenmultipliedbythesecretkey,risentoallthepowersintheinterval[1;d].Theag-gregationisperformedwithakeythatcanbepubliclyknown.Thesamesecretkeymustbedistributedtoeverynodeinthenetwork.Themessagesizeisproportionaltotheparameterd,sothatford�100,themessagesbecomeverylarge.Thisschemehasbeenbrokenin(15),whereithasbeenshownthatitispossibletobreaktheschemegivend+1knownplaintexts:weunderlinethatthisassumptioncanbeeasilymetinaWSNsetting,wereitispossibletodeployafakesen-sorthatmeasuresthesamevalueofarightfuloneandinthesametimeeavesdroptheencryptedmessagegeneratedbythe SecureandTrustedin-networkDataProcessinginWirelessSensorNetworks:aSurvey195impossibletocheckifanotherentitydoes.Thesetrepresen-tationisconstructedsolvingasystemoflinearDiophantineequationsusingtheChineseReminderTheorem.In(6)theauthorsproposeamechanismbasedonHiddenVectorEncryption(HVE).ByusingHVEapublickeysystemsupportingqueriesonencrypteddatacanproducetokensfortestinganysupportedquerypredicate.Thetokenletsany-onetestthepredicateonagivenciphertextwithoutlearninganyotherinformationabouttheplaintext.Theproposedso-lutionallowsforcomparisonsandsubsetqueriesaswellasconjunctiveversionsofthesepredicates.6Trustedin-networkdataaggregationAsexplainedinSection3,compromisednodesrepresentabigthreattothesecurityofin-networkdataprocessing.Thechal-lengearisesfromthefactthatsensornodesoftenneedtobelow-costtojustifytheirdeployment,whichmakesitveryhardtosatisfytamper-resistancerequirements.Anattackercouldgaincontroloverasensornodeinastealthywayinordertogeneratefaultydataortoalterthedataprocessing.Thus,onceanodeiscompromised,thesecretmaterialcontainedwithiniscompletelyexposedandusablebytheattacker.Inordertocopewithsuchthreat,afewtrustframeworkshavebeenproposedintheliteraturetodetectbogussensordata.Thisimpliesatrustevaluationofsensordataatacquisitionandaggregationtime:trustreferstothereliabilityandaccu-racyofsensedinformationanditisrelatedtothequalityofthedeliveredsensordata.6.1SensorNodeFailureDetectionWithinaWSN,sensornodesarepronetodi erentkindoffailures,suchascrash,omission,timing,valueandarbitraryfailures(61).Crashandomissionimplynoresponsefromthesensortothedataquery.Timingreferstotimeoutduringtheprocessingarequest.Valuefailuredealswithdeliveringincorrectvalueduetomalfunctioningorcompromisedsen-sornodes.Finally,arbitraryfailuresincludeallthetypesoffailuresthatcannotbeclassi edinpreviouslydescribedcat-egories.Forexample,Byzantinefailures(38,35)describeatypeofarbitraryfailuresthatareingeneralcausedbyamali-ciousservicethatnotonlybehaveserroneously,butalsofailstobehaveconsistentlywheninteractingwithotherservicesandapplications.Insensornodefailuredetection,weidentifyself-diagnosis(28)andgroupdetection(36,17,25,42)approaches.Withself-diagnosis,eachnodesdetectitsownfailure,e.g.,basedonbatteryexhaustion.Ingroupdetection,eachnodeinthesameareaissupposedtodeliverasimilarinformation.Agoodex-ampleistemperaturemeasurementinaroom.LetusassumeaWSNapplicationtomeasurethetemperatureinaroom:takingtheaveragevalueprovidedbydi erentthermometersinthesameroommakesitpossibletoresistattacksandtoproducesensordatawhichispotentiallymoretrustworthyasthenumberofcontributorsincreases(37).Suchanaiveap-proachhoweverraisesthefollowingissue:ifthetemperaturevaluescollectedare(10;10;11;50),wegetanaverageofover20.Itisobviousthatthelastvalueisawrongone,andthereportedtemperatureshouldbe10.Theusageofanappro-priatestatisticalmethod,e.g.,median,allowsustodetectthat50isanoutlier,andlabelsthesensornodedeliveringthisvalueasunreliable.Nevertheless,thisapproachrequiresalargenumberofsensornodesproducingthesametypeofmeasurements.6.2ReputationSystemTrustworthinessisoftendescribedastheexpectationofco-operativebehavior(22).Itsevaluationisusuallybasedonpreviousexperienceswiththesameparty.Thusanentitycanestablishtrustinitscommunicationpartnerbasedonthelatter'sreputation(58).Themathematicalfoundationsforreputationmanagementarerootedinstatisticsandprobabil-ity(55).Reputationisde nedastheperceptionthatanentityhasofanother'sintentions.Furthermore,reputationisbasedonacollectionofevidenceofgoodandbadbehaviorundertakenbyotherentities.In(22),theauthorsintegratetoolsfromdi erentdomainssuchaseconomics,statistics,dataanalysisandcryptographyinordertoestablishtrustworthinessofsensornodes.ThisapproachcapitalizesonBayesianformulationofreputationrepresentation,updates,integrationandtrustevolution.TheauthorsproposeaReputationbasedFrameworkforSensorNetwork(RFSN),whichcancopewithbadmouthingandballotstungattacks.Fortheformer,theauthorsignoreallbadreputationinformationaboutothersnodes,andkeeponlythegoodreputationinformation.Forthelatter,theauthorsproposetointegratethereputationonanodewhenupdatingitsownreputationinformationabouttheothernodes.Thusinthisapproach,onlygoodbehavingnodescangetaccesstoothersnodesinformation.In(9),theauthorsalsoproposeareputationsystembasedonBayesianapproach.Theyclearlydistinguishthereputa-tionfromtrustinsensornodes.Theformerrepresentstheopinionformedbyanodeonanothernodeinasensornet-work.Thelatterrepresentstheopinionformedbyanodeabouthowhonestanothernodeisinthereputationsystem.Inthisapproach,eachnodeisinchargeofmaintainingitsreputationandtrustratingonthenodeofitsinterest(e.g.theonesthatitisinteractingwith).Inaddition,reputationsystems(8,43),originallydesignedforad-hocnetworks,arehardlyapplicabletoWSNduetoresourcerestrictiononsen-sornodes.Inallthoseapproaches,authenticationofsensornodesisrequired.Inordertobindareputationtoasensornode,eachnodehastoauthenticateitself.Moreover,thistypeofapproachdoesnotproposeanysolutionregardingthedeter-minationofreputationforthe rstinteractions,whenintro-ducinganewnodeinthesensornetwork.Finally,approachesbasedonreputationsystemaretime-expensive,sincetheyre-quirealotofinteractionbetweensensornodesbeforeestab-lishingastabletrustrelationship.6.3TrustBasedFrameworkWedistinguishbetweenreputationandtrust.Reputationisbasedonpastexperienceswithagivenentity,whereastrustisnotrestrictedtothis.Trustenablestoencompassobjectiveandsubjectivecharacteristicsonanentity.Reputationispartofthesubjectivecharacteristicswhichpermitstodeterminetrust,butnottheonlyone.Thegoaloftrustbasedframeworkforwirelesssensornetworksistoestablishtrustinallsensornodesbasedontheexpectationthattheywilldelivernon-compromiseddata. SecureandTrustedin-networkDataProcessinginWirelessSensorNetworks:aSurvey197[9]SonjaBucheggerandJean-YvesLeBoudec.ArobustreputationsystemforP2Pandmobilead-hocnetworks.InProceedingsoftheSecondWorkshopontheEconomicsofPeer-to-PeerSystems,2004.[10]BusinessWeek.21ideasforthe21stcentury.BusinessWeek,pp78-167,1999.[11]D.W.Carman,P.S.Kruus,andB.J.Matt.Constraintsandapproachesfordistributedsensornetworksecurity.TechnicalReport00-010,NetworkAssociatesInc.,2000.[12]ClaudeCastelluccia,EinarMykletun,andGeneTsudik.Ecientaggregationofencrypteddatainwirelesssensornetworks.InProceedingsoftheSecondAnnualInter-nationalConferenceonMobileandUbiquitousSystems:NetworkingandServices(MobiQuitous),pages109{117,2005.[13]Certicom.Certicomannouncesellipticcurvecryp-tosystemchallengewinner(pressrelease),1997.http://www.certicom.com.[14]HaowenChan,AdrianPerrig,andDawnSong.Securehierarchicalin-networkaggregationinsensornetworks.InProceedingsoftheACMConferenceonComputerandCommunicationsSecurity,pages278{287,2006.[15]JungHeeCheon,Woo-HwanKim,andHyunSooNam.Known-plaintextcryptanalysisoftheDomingo-Ferreral-gebraicprivacyhomomorphismscheme.Inf.Process.Lett.,97(3):118{123,2006.[16]Chee-YeeChongandS.P.Kumar.Sensornetworks:evolution,opportunities,andchallenges.ProceedingsoftheIEEE,91(8):1247{1256,2003.[17]M.Ding,D.Chen,K.Xing,andX.Cheng.Localizedfault-toleranteventboundarydetectioninsensornet-works.InProceedingsofthe24thAnnualJointConfer-enceoftheIEEEComputerandCommunicationsSoci-eties(INFOCOM),2005.[18]JosepDomingo-Ferrer.Aprovablysecureadditiveandmultiplicativeprivacyhomomorphism.InProceedingsofthe5thInternationalConferenceonInformationSecu-rity(ISC),pages471{483,2002.[19]ElenaFasolo,MicheleRossi,JorgWidmer,andMicheleZorzi.In-networkaggregationtechniquesforwirelesssensornetworks:Asurvey.IEEECommunicationMag-azine,April2007.[20]GerhardFrey,MichaelMuller,andHans-GeorgRuck.TheTatepairingandthediscretelogarithmappliedtoellipticcurvecryptosystems.IEEETransactionsonIn-formationTheory,45(5):1717{1719,1999.[21]StevenD.Galbraith,KeithHarrison,andDavidSoldera.ImplementingtheTatepairing.InANTS-V:Proceed-ingsofthe5thInternationalSymposiumonAlgorith-micNumberTheory,pages324{337,London,UK,2002.Springer-Verlag.[22]SaurabhGaneriwalandManiB.Srivastava.Reputation-basedframeworkforhighintegritysensornetworks.InSASN'04:Proceedingsofthe2ndACMworkshoponSecurityofadhocandsensornetworks,pages66{77,NewYork,NY,USA,2004.ACM.[23]PierrickGaudry,FlorianHess,andNigelP.Smart.Con-structiveanddestructivefacetsofWeildescentonellipticcurves.J.Cryptology,15(1):19{46,2002.[24]JohannGroschadl.TinySA:Asecurityarchitectureforwirelesssensornetworks(extendedabstract).InProceed-ingsofthe2ndInternationalConferenceonEmergingNetworkingExperimentsandTechnologies(CoNEXT).ACMPress,2006.[25]G.GuptaandM.Younis.Fault-tolerantclusteringofwirelesssensornetworks.InProceedingsofthe24thAn-nualJointConferenceoftheIEEEComputerandCom-municationsSocieties(INFOCOM),2005.[26]NilsGura,ArunPatel,ArvinderpalWander,HansEberle,andSheuelingChangShantz.ComparingellipticcurvecryptographyandRSAon8-bitCPUs.InProceed-ingsoftheWorkshoponCryptographicHardwareandEmbeddedSystems(CHES),pages119{132,2004.[27]DarrelHankerson,AlfredJ.Menezes,andScottVan-stone.GuidetoEllipticCurveCryptography.Springer-Verlag,2003.[28]S.HarteandA.Rahman.Faulttoleranceinsensornet-worksusingself-diagnosingsensornodes.InIEEEIn-ternationalWorkshoponIntelligentEnviromnent,2005.[29]AlirezaHodjatandIngridVerbauwhede.Theenergycostofsecretsinad-hocnetworks(shortpaper).InProceed-ingsoftheIEEECASWorkshoponWirelessCommu-nicationandNetworking,2002.[30]R.IsmailandA.Josang.Thebetareputationsystem.InProceedingsofthe15thBledConferenceonElectronicCommerce,2002.[31]RobertJohnson,DavidMolnar,DawnXiaodongSong,andDavidWagner.Homomorphicsignatureschemes.InCT-RSA'02:ProceedingsoftheTheCryptographer'sTrackattheRSAConferenceonTopicsinCryptology,pages244{262,London,UK,2002.Springer-Verlag.[32]AudunJsang.Alogicforuncertainprobabilities.Int.J.Uncertain.FuzzinessKnowl.-BasedSyst.,9(3):279{311,2001.[33]T.Kleinjung.DiscretelogarithmsinGF(p)|160dig-its.Nabble-NumberTheoryforumandmailinglistarchive.http://www.nabble.com/Discrete-logarithms-in-GF(p)|{160-digits-t3175622.html.[34]NealKoblitz.Ellipticcurvecryptosystems.MathematicsofComputation,48:203{209,1987.[35]Chiu-YuenKoo.Broadcastinradionetworkstolerat-ingByzantineadversarialbehavior.InPODC'04:Pro-ceedingsofthetwenty-thirdannualACMsymposiumonPrinciplesofdistributedcomputing,pages275{282,NewYork,NY,USA,2004.ACMPress.[36]B.KrishnamachariandS.Iyengar.DistributedBayesianalgorithmsforfault-toleranteventregiondetectioninwirelesssensornetworks.IEEETransactionsonCom-puters,53(3):241{250,2004.[37]SvenLachmund,ThomasWalter,LaurentBussard,Lau-rentGomez,andEddyOlk.Context-awareaccesscon-trol.InProceedingsofthe3rdAnnualInternationalCon- SecureandTrustedin-networkDataProcessinginWirelessSensorNetworks:aSurvey199andTrustsince2001.HereceivedhisengineerdegreeincomputersciencefromEcoleSuperieureenSciencesInforma-tiques,SophiaAntipolis,Francein1999.HiscurrentresearchinterestslieintheareaofsecureintegrationofWirelessSen-sorNetworksintobusinessapplicationandtrustedin-networkdataaggregationandreasoning.KonradWrona(kwrona@ieee.org)Dr.-Ing.KonradWronaiscurrentlyaPrincipalInvestigatoratSAPResearchLabinSophiaAntipolis,France.Hehasovertenyearsofworkexpe-rienceinanindustrial(SAPResearchandEricssonResearch)andinanacademic(RWTHAachenUniversity,MediaLabEurope,andRutgersUniversity)researchanddevelopmentenvironment.HehasearnedhisM.Eng.inTelecommunica-tionsfromWarsawUniversityofTechnology,Polandin1998,andhisPh.D.inElectricalEngineeringfromRWTHAachenUniversity,Germanyin2005.Heisanauthorandaco-authorofovertwentypublications,aswellasaco-inventorofseveralpatents.Theareasofhisprofessionalinterestsincludesecu-rityincommunicationnetworks,wirelessandmobileappli-cations,distributedsystems,applicationsofsensornetworks,andelectroniccommerce.LorenzoOdoricoisanInternatSAPLabsFranceintheDepartmentofSecurityandTrust,whereheiscurrentlywrit-inghisMasterThesis.HereceivedhisBScinComputerSci-encefromPolitecnicodiTorino,Italyin2005,andheex-pectshisMasterinNetworkingandDistributedSystemfromEcolePolytechniquedel'UniversitedeNice-SophiaAntipo-lis,Francein2007,andhisMScinComputerSciencefromPolitecnicodiTorino,Italyin2008.Hiscurrentresearchin-terestslieinthesecurityofWirelessSensorNetworks.