KHVFLHQFHRIPDNLQJWRUTXHIURPZLQGOGHQEXUJFWREHU Wind turbine control applications of turbine mounted LIDAR E A Bossanyi A Kumar and O Hugues Salas  An independent study  Project outline  Actual at hub

KHVFLHQFHRIPDNLQJWRUTXHIURPZLQGOGHQEXUJFWREHU Wind turbine control applications of turbine mounted LIDAR E A Bossanyi A Kumar and O Hugues Salas An independent study Project outline Actual at hub - Description

00055 for different ranges 01 02 03 04 05 06 07 08 09 50 100 150 200 250 Distance from lens m 50 75 100 150 200 Weighting function for different Alpha at 75m range 01 02 03 04 05 06 07 08 09 20 40 60 80 100 120 140 160 180 200 Distance from lens m 00 ID: 26558 Download Pdf

240K - views

KHVFLHQFHRIPDNLQJWRUTXHIURPZLQGOGHQEXUJFWREHU Wind turbine control applications of turbine mounted LIDAR E A Bossanyi A Kumar and O Hugues Salas An independent study Project outline Actual at hub

00055 for different ranges 01 02 03 04 05 06 07 08 09 50 100 150 200 250 Distance from lens m 50 75 100 150 200 Weighting function for different Alpha at 75m range 01 02 03 04 05 06 07 08 09 20 40 60 80 100 120 140 160 180 200 Distance from lens m 00

Similar presentations


Download Pdf

KHVFLHQFHRIPDNLQJWRUTXHIURPZLQGOGHQEXUJFWREHU Wind turbine control applications of turbine mounted LIDAR E A Bossanyi A Kumar and O Hugues Salas An independent study Project outline Actual at hub




Download Pdf - The PPT/PDF document "KHVFLHQFHRIPDNLQJWRUTXHIURPZLQGOGHQEXUJF..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.



Presentation on theme: "KHVFLHQFHRIPDNLQJWRUTXHIURPZLQGOGHQEXUJFWREHU Wind turbine control applications of turbine mounted LIDAR E A Bossanyi A Kumar and O Hugues Salas An independent study Project outline Actual at hub"— Presentation transcript:


Page 1
7KHVFLHQFHRIPDNLQJWRUTXHIURPZLQG2OGHQEXUJ2FWREHU Wind turbine control applications of turbine mounted LIDAR E A Bossanyi, A Kumar and O Hugues Salas
Page 2
An independent study
Page 3
Project outline
Page 4
Actual at hub (=measured if Frozen Turbulence) Measured (Unfrozen Turbulence) Longitudinal velocity [m/s] Time [s] 10 11 12 13 14 15 16 17 18 10 12 14 16 18 20 Enhanced simulation modelling capability

ZLQGGHFRUUHODWLRQDEDQGRQLQJ7D\ORUVIUR]HQWXUEXOHQFHK\SRWKHVLV $YRLGVFKHDWLQJLQVLPXODWLRQV 0DQ\GLIIHUHQW/,'$5W\SHV
Page 5
LIDAR types modelled D Weighting function with alpha = 0.00055 for different ranges 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 50 100 150 200 250 Distance from lens (m) 50 75 100 150 200 Weighting function for different Alpha at 75m range 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 20 40 60 80 100 120 140 160 180 200 Distance from lens (m) 0.00055 0.001

0.0025 0.005 0.01 0.05 0.1 0.15 0.2 0.25 -30 -20 -10 10 20 30 Distance from focus point (m) Weighting function (normalised) 50 100 150 -100 -50 50 100 -80 -60 -40 -20 20 40 60 80 50 100 150 -100 -50 50 100 -80 -60 -40 -20 20 40 60 80
Page 6
Processing the raw LIDAR signals T T T Difficult to distinguish T , U
Page 7
Initial screening of LIDAR configurations
Page 8
Initial screening: examples True rotor-averaged value Lidar value Longitudinal wind speed [m/s] Time [s] 10 12 14 16 18 20 100 200 300 400 500 600 True rotor-averaged value Lidar value Vertical shear

[1/min] Time [s] -1 -2 -3 100 200 300 400 500 600 True rotor-averaged value Lidar value Horizontal shear [1/min] Time [s] -1 -2 -3 -4 100 200 300 400 500 600 True rotor-averaged value Lidar value Direction [deg] Time [s] -5 -10 -15 -20 -25 10 15 20 25 100 200 300 400 500 600 Longitudinal wind speed Vertical shear gradient Horizontal shear gradient Direction
Page 9
Initial screening: conclusions DVLQJOHFRQILJXUDWLRQZRQWEHWKHEHVWIRUHYHU\WKLQJ
Page 10
Possibilities with LIDAR assisted control o
Page

11
Collective pitch control: Very simple feed forward implementation LIDAR measurements Modification to control action generator speed set point Measured generator speed, tower top acceleration, etc. pitch angle Measured generator speed Other measured signals Wind field estimation algorithms Bladed simulation (or real turbine) LIDAR based feed forward control action Feedback controller
Page 12
Improved collective pitch control with LIDAR Base PI Base PI + Lidar Reopt + Lidar Reopt, no Lidar Rotor speed [rpm] Time [s] 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 100 200 300 400 500

600
Page 13
Improved collective pitch control with LIDAR Re optimised PI with LIDAR (red line) achieved similar speed control to baseline controller but with lower PI gains Pitch movements are reduced The pitch controller anticipates the increases in wind speed The pitch movements start earlier and so have smaller peaks Base PI Reopt + Lidar Mean pitch angle [deg] Time [s] -2 10 12 14 100 200 300 400 500 600
Page 14
Improved collective pitch control with LIDAR Reduced pitch movements result in reduction in thrust variation Thrust related loads on turbine are reduced, for

example: tower base bending moment. Base PI Reopt + Lidar Tower My [MNm] Time [s] 20 30 40 50 60 70 80 90 100 110 100 200 300 400 500 600
Page 15
Improved collective pitch control with LIDAR Blade root load reduction 0.5 1.5 2.5 3.5 4.5 Mx My Mz Fx Fy Fz % reduction SN 4 (Steel) SN 10 (GRP) Shaft load reduction (SN 4) 10 12 14 Mx My Mz Fx Fy Fz % reduction Yaw bearing load reduction (SN 4) -2 10 12 14 Mx My Mz Fx Fy Fz % reduction Tower base load reduction (SN 4) -2 10 12 14 Mx My Mz Fx Fy Fz % reduction Even very simple methods achieve significant reduction in thrust related fatigue

loads 20% reduction in above rated wind speeds 14% lifetime fatigue load reduction, e.g. tower base bending moment
Page 16
Improved collective pitch control with LIDAR 0.001 0.01 0.1 35000 55000 75000 95000 115000 Tower base My (kNm) Probability of exceedance Base case LIDAR (typical range) 0.001 0.01 0.1 5000 7000 9000 11000 13000 15000 17000 Blade root My (kNm) Probability of exceedance Base case LIDAR (typical range)
Page 17
Improved IPC with LIDAR? 20 40 60 80 100 120 140 Blade root My moment (steel) Blade root My moment (GRP) Shaft My moment (steel) Shaft Mz moment

(steel) Tower top nod moment (steel) Tower top yaw moment (steel) Increase in pitch travel Decrease in loads or increase in pitch travel (%) Conventional IPC LIDAR IPC Both together o
Page 18
Improved C tracking with LIDAR? - / . RPM (No Lidar) RPM (Lidar) Rotor average wind speed, m/s m/s or RPM Time [s] 10 11 12 13 100 200 300 400 500 600 No Lidar Lidar Electrical power [MW] Time [s] 100 200 300 400 500 600
Page 19
Improved yaw tracking with LIDAR?

RIHQHUJ\FRPSDUHGWRLGHDOFRQWLQXRXV\DZLQJ 15s 30s 45s 10 12 14 0.02 0.04 0.06 0.08 0.1 Mean absolute yaw rate [deg/s] RMS yaw misalignment [deg] No Lidar Lidar Mixed 10 minute simulation (but really depends on low frequency variations which are site dependent)
Page 20
Conclusions
Page 21
Acknowledgements
Page 22
Thanks for listening! ervin.bossanyi@gl garradhassan.com