/
Local anaesthetics Local anaesthetics

Local anaesthetics - PowerPoint Presentation

trish-goza
trish-goza . @trish-goza
Follow
402 views
Uploaded On 2015-11-29

Local anaesthetics - PPT Presentation

Dr JM Dippenaar 2013 1 Local anesthetic drugs Amides Esters Lignocaine Bupivacaine Ropivacaine Levobupivacaine mepivacaine Cocaine PABA esters Procaine Chloroprocaine 2 Local anesthetic drugs ID: 208611

action bupivacaine lipid toxicity bupivacaine action toxicity lipid local lignocaine duration mechanism onset channel openers adrenaline dose ropivacaine pka

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Local anaesthetics" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Local anaesthetics

Dr JM Dippenaar2013

1Slide2

Local anesthetic drugs

Amides

Esters

Lignocaine

Bupivacaine

Ropivacaine

Levobupivacaine

mepivacaine

Cocaine

PABA estersProcaineChloroprocaine

2Slide3

Local anesthetic drugs

Amides

Esters

Liver metabolism

Pseudocholine esterase

3Slide4

Local anesthetic drugs

Lignocaine

Cocaine

4Slide5

Local anesthetic drugs

Bupivacaine

Ropivacaine

5Slide6

Chemical & physical characteristics

Lipid solubility = potency

onset of actionpKa ∝ onset of action

6Slide7

pKa

7Slide8

Chemical & physical characteristics

Lipid solubility = potency,

onset of actionpKa ∝ onset of actionProtein binding = duration of actionIsomerism – Left turning=↑ duration, potency,↓ toxicityLocal factors (inject)– spinal, subcostal (faster) vs. peripheral, epidural (longer) etcNerve anatomy Diameter, myelinated or not, activity

8Slide9

Physico-chemical properties

Drug

Lipid solubility

pKa

Protein binding

Potency

Lignocaine

2.9

7.7

64

4

Bupivacaine Levo-bupiva

27

8.1

8.1

95.5

94.3

16

Ropivacaine

25

8.1

94.

16

9Slide10

Mechanism of action

10Slide11

Mechanism of action

11Slide12

Mechanism of action

12Slide13

Mechanism of action

13Slide14

Mechanism of action

14Slide15

Mechanism of action

15Slide16

Cocaine

Ester derivativeIntense vasoconstriction

Indirect sympathomimetic

Release NA

Block reuptake of NA and dopamineS/EEuphoria, paranoia, seizuresHypertension, tachycardia

16Slide17

Prilocaine

Emla cream:Eutetic Mixture of Local Anaesthetic

Added to lignocaine in equal quantities

Changes the melting point of the drugs

Skin analgesia within 60minS/E: Methaemoglobinaemia

17Slide18

Lignocaine

Amide, pKa = 7.7Low lipid solubility

Metabolism:

Liver

99% (1% unchanged via kidneys)CYP 2D6 and 3A4Monoethylglycinexilidide (MEGX)Active metaboliteAdditive to CNS side effects

18Slide19

Bupivacaine

pKa 8.1Slow onset of action

Very potent

Highly lipid soluble

Long duration of actionCVS toxicityRefractory ventricular fibrillation

19Slide20

Lignocaine vs bupvacaine

Drug

Lignocaine

Bupivacaine

Potency

4

16

Onset

Short

Prolonged

Duration

Short

Prolonged

Protein binding

64%

95%

Toxicity

CNS

CVS

20Slide21

Additives to bupivacaine

Glucose80mg (8%) added to 'spinal bupivacaine'

Increase the baricity of bupivacaine

Heavier than CSF

Gravitates to lower spinal regionsSmaller dose for denser block

21Slide22

Additives to local anaesthetic

Vasoconstrictor = AdrenalineDecreased absorption

Increased safe dose

Increased duration of action

Opioids = morphine, fentanyl, sufentanilNeuraxial = morphine vs fentanylIncreased duration of action

22Slide23

Additives to local anaesthetic

Alkalinize = NaHCO3Increased non-ionized fraction

Faster onset of action

Precipitation of adrenaline - no premix!

Anticholinergics = NeostigmineA2-agonist = colonizing, dexmedetomidineDenser sensory blockProlonged duration of action

23Slide24

Dosage

Lignocaine

= 1%

1g in 100ml ↓1000mg in 100ml ↓10 mg/ml

Bupivacaine = 0.5% ↓0.5g in 100ml ↓500mg in 100ml

5mg/ml

24Slide25

Maximum dose for infiltration

Lignocaine3-4mg/kg without adrenaline

7mg with adrenaline

Bupivacaine / L-bupivacaine

2mg/kg irrespective of adrenalineMaximum of 150mgRopivacaine2mg/kg irrespective of adrenaline

25Slide26

Dosage calculation

Child of 20kg for suture laceration. How many mls of 0.5% bupivacaine with adrenaline may he receive?

Toxic dose with adrenaline = 2mg/kg

Total dose - 20kg x 2mg/kg = 40mg

Each 0,5% vial has 5mg/ml of bupivacaine Therefore - 40mg /5mg/ml = 8ml of 0.5% bupivacaine!

26Slide27

Toxicity: Classification

Local toxicity

Neurotoxicity

Transient neurological symptoms

MyotoxicitySystemic toxicityCNSCVS

27Slide28

Systemic toxicity

Intravascular injection Increased absorption

plasma concentration Distribution Vessel rich organ group

28Slide29

Toxicity:

absorption

Excessive doseSite of injectionIntercostal>caudal>epidural>brachial plexusPhysico-chemical properties↓ Lipid solubility }↓ Protein binding } ↑ absorption↓ Potency } Vasoconstrictor

29Slide30

Toxic doses

Lignocaine

3-4mg/kg without adrenaline

7mg with adrenaline

Bupivacaine / L-bupivacaine2mg/kg irrespective of adrenalineMaximum of 150mgRopivacaine 2mg/kg irrespective of adrenaline

30Slide31

Toxicity

CNS

CVS (Lignocaine 7x more) (Bupivacaine 3x more) Convulsions Refractory ventricular fibrillation

31Slide32

CNS toxicity

Initial phase

Circumoral paresthesia, tinnitus, confusion

Excitatory phase

ConvulsionsDepressive phaseLoss of consciousnessComaRespiratory arrest

32Slide33

CVS toxicity

Initial phase

Hypertension, tachycardia

Intermediate phase

Myocardial depression → COHypotensionTerminal phaseVasodilatation, hypotension, bradycardiaConduction defects, dysrhythmias

33Slide34

Bupivacaine cardiac toxicity

34Slide35

Toxicity

To

complications due to bupivacaineRopivacaineLevo-bupivacaine

35Slide36

Ropivacaine

Amide ,

pKa

= 8.1

Lower lipid solubilityMetabolismLiver 99% (1% unchanged via kidneys)CYP 1A2 (fluvoxamine ↓ metabolism 16%)

36Slide37

Ropivacaine

Biphasic vascular effect

Low[ ] = vasoconstriction

High [ ] = vasodilatation

Faster dissociation from cardiac Na+ channels than bupivacaineHigher threshold for CNS symptoms

37Slide38

Ropivacaine: clinical uses

Pain relief:

Epidural for labour, post op:

0.2%

@6-15ml/hSurgery: 0.75%-1% up to 12ml bolusWell differentiated blockGood sensory blockadeMuch less motor blockade

38Slide39

L-bupivacaine

L isomer of bupivacaine

pKa 8.1

As potent as racemic mixture

Potentially less CVS toxicityL-isomer less direct cardiotoxic effects

39Slide40

Rx of toxicity

Convulsions

BZ

Thiopentone

PropofolVentricular fibrilationBretiliumIntralipid®K+ channel openers

40Slide41

Rx of toxicity

Ventricular fibrilation

Bretilium

Intralipid

®K+ channel openers

41Slide42

Bretilium tosylate

Class III anti arrhythmic

Slows phase 3

repolarisation

Prolongs refractory period↓ release of NANot manufactured currently

42Slide43

K

+

channel openers

Pinacidil

, bimakalimOpens K+ATP channelsShorten action potential in Purkinje fibersProlongs plateau phaseHyperpolarise resting membrane potential

43Slide44

K

+

channel openers: side effects

Shorten action potential =

↓ Ca++ influxReduced contractilityExcessive coronary vasodilatationCoronary steal with steal prone anatomy

44Slide45

K

+

channel openers

Improve AV conduction

ButMyocardial depression

45Slide46

Intralipid

®

Lipid emulsion

Soya oil

Egg phospholipidsGlycerolTPN, Propofol↑ effective antidoteBupivacaine induced CVS collapse

46Slide47

Intralipid

®

: proposed actions

Lipid sink

Draws Bupivacaine from plasmaDecreased free fractionHigh lipid concentrationForced lipid influx into myocyteOverwhelms L-CAT↑ FFA for energy production↑ susceptibility for resuscitation

47