PDF-or,equivalently,limn!1PrXn+zp

Author : trish-goza | Published Date : 2016-03-13

n1zwhichistheasymptoticprobabilityinthetailInsteadsupposeweseekthefollowingprobabilityPrXnwhereisxedDoesthecentrallimittheoremsayanythingusefulItiseasytoseethatforanylimn1P

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "or,equivalently,limn!1PrXn+zp" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

or,equivalently,limn!1PrXn+zp: Transcript


n1zwhichistheasymptoticprobabilityinthetailInsteadsupposeweseekthefollowingprobabilityPrXnwhereisxedDoesthecentrallimittheoremsayanythingusefulItiseasytoseethatforanylimn1P. PU/DSS/OTR PU/DSS/OTR model =−)...21()...21(10210210),...2,1|1Pr(),...2,1|1Pr()...21(),...2,1|1Pr(KKKKXXXXKKXXXYXXXYXXFXXXYβββββββ&# r!e;forr=0;1;2;:::Thus,theprobabilitythattherewillbemorethankmissprintsinagivenpageisp=1Xr=k+1Pr[Y=r]=1Xr=k+1r r!e:(1)Next,letXdenotethenumberofthepagesoutofthenthatcontainmorethankmissprints.The bn)= f xibi j xi 2 Z g . We refer to b1;   n matrix whose columns are b1; ;bn, then the lattice generated by B is  L( n ; +). Remark. We will mostly consider full-rank lattices, as the (j+k)!(njk)!,whereasnjnjk=n! j!(nj)!(nj)! k!(njk)!=n! j!k!(njk)!.Sinceallthenumbersinvolvedarepositive,wehavethatnj+knjnjkifandonlyifj!k!(j+k)!,or,equivalently,k!(j+k)! j!.Since Cand,foreachn2IN,fn:E! Candassumethat(H1)limn!1fn(t)=f(t)uniformlyonEand(H2)foreachn2IN,limt!pfn(t)=AnexistsThen(a)limn!1An=Aexistsand(b)limt!pf(t)=A.Thatis,limt!plimn!1fn(t)=limn!1limt!pfn(t).c\rJoel ((P_W)P)!W TT TFFTTTF TFFTFFT TTTTTFF FFTTFDenition:Acompoundstatementisacontradictionifitisfalseregardlessofthetruthvaluesassignedtoitscomponentatomicstatements.Equivalently,intermsoftruthtables:D n:WeobservethatA(n)(A)nforalln1:Wealsoobservethat0(A)1and(A)=1ifandonlyifA=N:TheSchnirelmanndensityisdi erentfromtheasymptoticdensity(A)de nedas(A)=limn!1A(n) n:While(A)measurestheasymptotic FATw-fSA Pr.0.00707.3.0.667Pr2279.67.3.0.477.1Pr.6.3.1.9.7.0.9Pr.0227.3.0.6Pr47.209.20.0 STIR FRIES WITHOUT RICE continued Pr79.022.027.7.09.207.4Pr.37.226.0Pr.2.249.17.1.9.1.07.0Pr2710.1Sw.140.1.420. FundamentalAlgorithms Problem1(5Points)Considerthede nitionsofoand!givenbelow.f(n)=o(g(n))i limn!1f(n) g(n)=0f(n)=!(g(n))i limn!1f(n) g(n)=1Fromthesede nitions,derivethede nitionsofoand!whichweregiven nnXk=1IfZk=ig! (i);wp1;where (i)isaconstant.Thensince0Xn1=b,itfollowsthatlimn!11 nnXk=1P(Zk=i)= (i):1.3UniformIntegrabilityIngeneral,theneededconditionensuringthatE(limn!1Xn)=limn!1E(Xn)iscalledunif n;x2=a+2(ba) n;:::;xn=bg:ThenZbaf=limn!1U(f;Pn)=limn!1L(f;Pn):Proof.Itsucestoshowthatlimn!1(U(f;Pn)L(f;Pn))=0sinceexercise29.5in[1]willthenimplytheresult.Let0begiven.Sincefisuniformlycontinuouson nZXbnhcd:[4]ZXhdde=limn!11 nZXdnhed:[5]Weestablishthattheselimitsexistandarewell-de ned,thoughnotequal.Lemma1.Givenananefunctionh2Def()onanopenk-simplex,Zhbdc=(1)kinfh;Zhdde=(1)ksuph:[6] In logic, predicates can be obtained by removing some or all of the nouns from a statement. For instance, . let . P. stand for “is a student at . UNC”. let . Q. stand for “is a student at”. n(^�)].Fortheestimatorabove,wecanuseAsy.var[^]=(1=n)limn!1nvar[^�]=(1=n)limn!12[2(n2+3n=2+1=2)]=[1:5n(n2+2n+1)]=1:3332.Noticethatthisisunambiguouslylargerthant

Download Document

Here is the link to download the presentation.
"or,equivalently,limn!1PrXn+zp"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents