/
hexaquark :  from  Photoproduction hexaquark :  from  Photoproduction

hexaquark : from Photoproduction - PowerPoint Presentation

welnews
welnews . @welnews
Follow
342 views
Uploaded On 2020-06-25

hexaquark : from Photoproduction - PPT Presentation

to Neutron Stars    Mikhail Bashkanov Well known friends Meson Baryon 2 Prospective Newbies Tetra quark Penta quark Hexa quark 3 Multiquark vs Molecule Tetra quark Penta ID: 787091

phys mev threshold lett mev phys lett threshold quark deuteron rev hexaquark 2380 2018 baryon bashkanov background neutron matter

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "hexaquark : from Photoproduction" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

hexaquark: from Photoproduction to Neutron Stars 

 

Mikhail

Bashkanov

Slide2

Well known friends

Meson

Baryon

2

Slide3

Prospective Newbies

Tetra-

quark

Penta-

quark

Hexa-

quark

3

Slide4

Multiquark vs Molecule

Tetra-

quark

Penta-

quark

Hexa-

quark

Meson-Baryon molecule

Baryon-Baryon molecule

Meson-Meson molecule

4

Slide5

Six quark systems

B=2,

, Dibaryon

 

Baryon-baryon molecule

By baryon number:

By internal structure:

B=0,

,

Baryonium

 

Genuine

hexaquark

5

Slide6

Dibaryonsprehistoric studies

Slide7

Ancient historyDeuteron – “trivial dibaryon”

proton neutron

1931 Harold Urey,

Nobel prize 1934

Deuteron

phtotdisintegration

J. Chadwick, M.

Goldhaber

Nature 134, 237, (

1934

)

Disintegration of the Diplon by

-Rays

“The first search for the excited deuteron

 

7

Slide8

Quark eraSix non-strange dibaryons

F. J. Dyson, N.-H.

Xuong

, Phys.

Rev

.

Lett. 13, 815 (1964).

I=0, J=3

I=3, J=0

I=1, J=2

I=0, J=1

8

I=1, J=0

I=2, J=1

Mirrored quantum numbers

Mass

NN threshold

N

threshold



threshold

Slide9

Quark eraSix non-strange dibaryons

F. J. Dyson, N.-H.

Xuong

, Phys.

Rev

.

Lett. 13, 815 (1964).

p

n

p

n

2.2 MeV

66

keV

deuteron

NN-FSI

N

~10 MeV

D. Arndt

resonance

NN threshold

N

threshold



threshold

N

~10 MeV

PRL

121 (2018) 052001

~70 MeV

 

PLB

762

(2016)

455

I=0, J=3

I=3, J=0

I=1, J=2

I=2, J=1

I=0, J=1

I=1, J=0

9

Slide10

Quark era

p

n

p

n

2.2 MeV

66

keV

deuteron

NN-FSI

N

~10 MeV

D. Arndt

resonance

NN threshold

N

threshold



threshold

N

~10 MeV

PRL

121 (2018) 052001

~70 MeV

 

PLB

762

(2016)

455

I=0, J=3

I=3, J=0

I=1, J=2

I=2, J=1

I=0, J=1

I=1, J=0

Loosely Bound/Unbound == Molecular

10

Slide11

Quark era

p

n

p

n

2.2 MeV

66

keV

deuteron

NN-FSI

N

~10 MeV

D. Arndt

resonance

NN threshold

N

threshold



threshold

N

~10 MeV

PRL

121 (2018) 052001

~70 MeV

 

PLB

762

(2016)

455

I=0, J=3

I=3, J=0

I=1, J=2

I=2, J=1

I=0, J=1

I=1, J=0

Strongly Bound

Far from thresholds

potential

Hexaquark

11

Slide12

size

 

size

Nearly complete overlap

 

Deuteron

Deltaron

12

Slide13

Hexaquark/Dibaryon

 

13

Slide14

Pathway to discovery

π

π

p

d

n

14

Slide15

New peak to climb

d*(2380)

hexaquark

70 MeV

 lifetime

 

P.

Adlarson

et. al Phys. Rev.

Lett

. 106:242302, 2011

NN*

background



background

15

Slide16

d*(2380)

 

 

 

 

 

 

d*

d*

d*

Pathway to

discovery

16

Slide17

decay branches

 

decay channel

Branching ratio, %

12(3)

14(1)

23(2)

30(5)

12(2)

6(1)

6(1)

0(10)

Branching ratio, %

12(3)

14(1)

23(2)

30(5)

12(2)

6(1)

6(1)

0(10)

 

Eur.Phys.J

. A51 (2015) 7, 87

 

Slide18

energy dependence at

 

SAID

New SAID

solutions

p

n

n

p

P.

Adlarson

et al

. Phys. Rev.

Lett

112

, 202301, (2014

)

18

Slide19

Argand plotP. Adlarson et al

. Phys. Rev. Lett. 112, 202301, (2014)P. Adlarson et al.

Phys. Rev. C 

90

, 035204 , (2014)

19

Slide20

 

EXPERIMENTAL VERIFICATION

20

Slide21

Hexaquark Autopsy

d

p

p

 

p

n

3

1/2

1/2

electron

*

21

Slide22

d*(2380) photoproduction

d

 

d

*

d

 

 

 

Conventional Background

M.

Egorov

, A. Fix,

Nucl.Phys

. A933 (2015)

104-113

 

B

.

Krusche

,

NStar

2019

T.

Ishikawa

et al.

 

Phys.Lett

. B772 (2017)

398

22

Slide23

d  d*(2380) transitionsDeuteron:

 

:

 

0.15%

5%

66%

2

%

30%

 

 

d*(2380)

deuteron

 

 

d

E2,

(

)

 

 

d

M3,

(

)

 

 

d

E4,

(

)

 

23

Slide24

d  d*(2380) transitionsDeuteron:

 

:

 

0.15%

5%

66%

2

%

30%

 

 

d*(2380)

deuteron

 

 

d

E2,

(

)

 

 

d

M3,

(

)

 

 

d

E4,

(

)

 

24

Slide25

Photon beam

spin asymmetry

d

 

p

n

 

M3 transition seems to be preferable

 

 

E2

transition

likely to be small

 

M.

Bashkanov

et al., Phys

. Lett B789, (2019), 7-12

25

Slide26

Is

compact?

 

Small E2 transition

 compact

26

Slide27

Is

compact?

 

Small E2 transition

 compact

Not necessary

M.

Bashkanov

, D.P. Watts, A.

Pastore:

 

PRC

100

(2019) no.1, 012201 

Pion cloud configurations in  

Cancellation effects Electric Quadrupole moment is small Magnetic Octupole moment is large!!! 

27

Slide28

Experimentum crucis

28

 

Target

p

 

 

 

 

Polarimeter

p

Slide29

Nucleon polarisation at

 

 

 

Conventional background, Kang et al

29

Slide30

Nucleon polarisation at

 

 

 

Conventional background, Kang et al

30

Slide31

Nucleon polarisation at

 

 

 

proton

H. Ikeda et al., Phys. Rev.

Lett

. 42, May 1979, 1321

Conventional background, Kang et al

31

Slide32

Nucleon polarisation at

 

 

 

neutron

proton

M

.

Bashkanov

et al.,

to be published soon

32

Slide33

Nuclear matter at high density

p

n

d

*

33

Slide34

Hidden interior

 

I.

Vidaña

,

M.

Bashkanov

,

D.P.

Watts,

A. Pastore

Phys.Lett

. B781 (2018) 112-116

34

Slide35

Hexaquarks in Neutron StarsI. Vidaña

, M. Bashkanov, D.P. Watts, A. PastorePhys.Lett

. B781 (2018) 112-116

Nuclear Matter

H

exaquark

Matter

35

Slide36

Hexaquarks in Neutron StarsI. Vidaña

, M. Bashkanov, D.P. Watts, A. PastorePhys.Lett

. B781 (2018) 112-116

Nuclear Matter

H

exaquark

Matter

36

Submitted to

arXiv

: 28.06.2017

Slide37

hexaquark

SU(3)

multiplet

 



*

*

 

 

 

 

J

p

=

3

+



37

Slide38

ConclusionMany dibaryons, but only one hexaquark –

Mass, width, quantum numbers

All hadronic decays are identified

e-m probes

 size and structure

in nuclear medium

production on nuclear targets

Neutron stars

EoS

NSNS, NSBH mergers

 

38

Slide39

Exotic Hadron Spectroscopy Workshop

12—13, December 2019, York, UK

https://events.iop.org/exotic-hardon-spectroscopy-2019

Slide40

Thank you





*

*

 

Slide41

**

+

*

*

*

+



*

*

*

+*

*



++

++

-

-

PLB

762

(2016)

455

Loosely bound or unbound

Phys.Rev.Lett

. 120 (2018) no.21,

212001

Bound by ~ 1 MeV, Lattice QCD (HAL-QCD)