/
78C.JarzynskiSeminairePoincarewhereWdenotestheworkperformedbytheagen 78C.JarzynskiSeminairePoincarewhereWdenotestheworkperformedbytheagen

78C.JarzynskiSeminairePoincarewhereWdenotestheworkperformedbytheagen - PDF document

yoshiko-marsland
yoshiko-marsland . @yoshiko-marsland
Follow
375 views
Uploaded On 2016-06-16

78C.JarzynskiSeminairePoincarewhereWdenotestheworkperformedbytheagen - PPT Presentation

WeWkBT4ThevalidityoftheseresultsdependsneitheronthenumberofmoleculesinthegasnorsurprisinglyontherateatwhichtheprocessisperformedIhaveusedthegasandpistonoutofconvenienceandfamiliaritybut ID: 365473

(W)=eW=kBT:(4)Thevalidityoftheseresultsdependsneitheronthenumberofmoleculesinthegas nor(surprisingly!)ontherateatwhichtheprocessisperformed.Ihaveusedthegasandpistonoutofconvenienceandfamiliarity but

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "78C.JarzynskiSeminairePoincarewhereWde..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

78C.JarzynskiSeminairePoincarewhereWdenotestheworkperformedbytheagentthatmanipulatesthepiston.Thisinequalityisnotmandatedbytheunderlyingdynamics:therecertainlyexistmicro-scopicallyviableN-particletrajectoriesforwhichW0.However,theprobabilitytoobservesuchtrajectoriesbecomesfantasticallysmallforlargeN.Bycontrast,fora\gas"ofonlyafewparticles,wewouldnotbesurprisedtoobserve{onceinararewhile,perhaps{anegativevalueofwork,thoughwestillexpectEq.1toholdonaverage:hWi&#x]TJ/;༖ ;.9;Ւ ;&#xTf 2;.52; 0 ;&#xTd [;0:(2)Theangularbracketshereandbelowdenoteanaverageovermanyrepetitionsofthishypotheticalprocess,withthetinysampleofgasre-equilibratedpriortoeachrepetition.Thisexamplesuggeststhefollowingperspective:asweapplythetoolsofther-modynamicstoeversmallersystems,thesecondlawbecomesincreasinglyblurred.InequalitiessuchasEq.1remaintrueonaverage,butstatistical uctuationsaroundtheaveragebecomeevermoreimportantasfewerdegreesoffreedomcomeintoplay.Thispicture,whilenotwrong,isincomplete.Itencouragesustodismissthe uctuationsinWasuninterestingnoisethatmerelyre ectspoorstatistics(smallN).Asitturnsout,these uctuationsthemselvessatisfyratherstrong,interestingandusefullaws.Forexample,Eq.2canbereplacedbytheequality,he�W=kBTi=1;(3)whereTisthetemperatureatwhichthegasisinitiallyequilibrated,andkBisBoltzmann'sconstant.Ifweadditionallyassumethatthepistonismanipulatedinatime-symmetricmanner,e.g.pushedinataconstantspeedandthenpulledoutatthesamespeed,thenthestatisticaldistributionofworkvalues(W)satis esthesymmetryrelation(+W) (�W)=eW=kBT:(4)Thevalidityoftheseresultsdependsneitheronthenumberofmoleculesinthegas,nor(surprisingly!)ontherateatwhichtheprocessisperformed.Ihaveusedthegasandpistonoutofconvenienceandfamiliarity,butthepredictionsillustratedherebyEqs.3and4{andexpressedmoregenerallybyEqs.15and30below{arenotspeci ctothisparticularexample.Theyapplytoanysystemthatisdrivenawayfromequilibriumbythevariationofmechanicalparameters,underrelativelystandardassumptionsregardingtheinitialequilibriumstateandthemicroscopicdynamics.Moreover,theybelongtoalargercollectionofrecentlyderivedtheoreticalpredictions,whichpertainto uctuationsofwork,[4,5,6,7,8,9]entropyproduction,[10,11,12,13,14,15,16,17,18]andotherquantities[19,20]insystemsfarfromthermalequilibrium.Whilethesepredictionsgobyvariousnames,bothdescriptiveandeponymous,theterm uctuationtheoremshascometoserveasausefullabelencompassingtheentirecollectionofresults.Thereisbynowalargebodyofliteratureon uctuationtheorems,includingreviewsandpedagogicaltreatments.[21,22,23,24,25,26,3,27,28,29,30,31,32,33,34,35,36,37,38]Inmyviewthesearenotresultsthatonemightnaturallyhaveobtained,bystar-tingwithasolidunderstandingofmacroscopicthermodynamicsandextrapolatingdowntosmallsystemsize.Rather,theyrevealgenuinelynew,nanoscalefeaturesofthesecondlaw.Myaiminthisreviewistoelaborateonthisassertion.Focusing 80C.JarzynskiSeminairePoincareterminalstates:WFFB;T�FA;T(5)HereF;TdenotestheHelmholtzfreeenergyofthestate[;T].Whentheparameterisvariedslowlyenoughthatthesystemremainsinequilibriumwiththereservoiratalltimes,thentheprocessisreversibleandisothermal,andW=F.Eq.5istheessentialstatementofthesecondlawofthermodynamicsthatwillapplyinSections3-6ofthisreview.Ofcourse,notallthermodynamicprocessesfallwithinthisparadigm,norisEq.5thebroadestformulationoftheClausiusin-equality.However,sincecompletegeneralitycanimpedeclarity,Iwillfocusontheclassofprocessesdescribedabove.Mostoftheresultspresentedinthefollowingsectionsapplyalsotomoregeneralthermodynamicprocesses{suchasthoseinvol-vingmultiplethermalreservoirsornonequilibriuminitialstates{asIwillbrie ymentioninSection7.Threecommentsarenowinorder,beforemovingdowntothenanoscale.(1)Asthesystemisdrivenawayfromequilibrium,itstemperaturemaychangeorbecomeill-de ned.ThevariableT,however,willalwaysdenotetheinitialtem-peratureofthesystemandthermalreservoir.(2)Noexternalworkisperformedonthesystemduringthere-equilibrationstage,t,asisheld xed.Inthissensethere-equilibrationstageissomewhatsuper uous:Eq.5remainsvalidiftheprocessisconsideredtoendatt={evenifthesystemhasnotyetre-equilibratedwiththereservoir!{providedwealwaysde neFtobeafreeenergydi erencebetweentheequilibriumstates[A;T]and[B;T].(3)Whileingeneralitispresumedthatthesystemremainsinthermalcontactwiththereservoirfor0t,theresultsdiscussedinthisreviewarealsovalidifthesystemisisolatedfromthereservoirduringthisinterval.2.2Microscopicde nitionsofworkandfreeenergyNowletus\scaledown"thisparadigmtosmallsystems,withaneyetowardincorporatingstatistical uctuations.Consideraframeworkinwhichthesystemofinterestandthethermalreservoirarerepresentedasalargecollectionofmicrosco-pic,classicaldegreesoffreedom.Theworkparameterisanadditionalcoordinatedescribingthepositionororientationofabody{orsomeothermechanicalvariablesuchasthelocationofalasertrapinasingle-moleculemanipulationexperiment[27]{thatinteractswiththesystemofinterest,butiscontrolledbyanexternalagent.ThisframeworkisillustratedwithatoymodelinFig.1.Herethesystemofinterestconsistsofthethreeparticlesrepresentedasopencircles,whosecoordinateszigivedistancesfromthe xedwall.Theworkparameteristhefourthparticle,depictedasashadedcircleatadistancefromthewall.Letthevectorxdenoteamicroscopicstateofthesystemofinterest,thatisthecon gurationsandmomentaofitsmicroscopicdegreesoffreedom;andletysimilarlydenoteamicrostateofthethermalreservoir.TheHamiltonianforthiscollectionofclassicalvariablesisassumedtotaketheformH(x;y;)=H(x;)+Henv(y)+Hint(x;y)(6)whereH(x;)representstheenergyofthesystemofinterest{includingitsinterac-tionwiththeworkparameter{Henv(y)istheenergyofthethermalenvironment, Vol.XVLeTemps,2010IrreversibilityandtheSecondLawofThermodynamicsattheNanoscale83systemevolvinginthefullphasespace(x;y)underatime-dependentHamiltonianH(x;y;(t)).TheresultsdiscussedinSections3-6canallbeobtainedwithinthisframework.Alternatively,wecantreatthereservoirimplicitly,bywritingdowne ectiveequationsofmotionforjustthesystemvariables,x.ExamplesincludeLan-gevindynamics,theMetropolisalgorithm,Nose-Hooverdynamicsanditsvariants,theAndersenthermostat,anddeterministicequationsbasedonGauss'sprincipleofleastconstraint.[23,34]AswiththeHamiltonianapproach,theresultsdiscus-sedbelowcanbederivedforeachofthesemodeldynamics.Thissuggeststhattheresultsthemselvesareratherrobust:theydonotdependsensitivelyonhowthemicroscopicdynamicsaremodeled.Sincetheaimofthisreviewistodescribewhatthesecondlawofthermodyna-mics\lookslike"inthepresenceof uctuations,full-blownderivationsof uctuationtheoremsandworkrelationswillnotbeprovided.However,inSections3and4,inadditiontodescribingvariousworkrelationsandtheirconnectionstothesecondlaw,IwillsketchhowseveralofthemcanbederivedforthetoysystemshowninFig.1,inthephysicalcontextmentionedbythe nalcommentinSection2.1:thesystemisthermallyisolatedduringtheinterval0t.Theaimhereistoconveysomeideaofthetheoreticalfoundationsoftheseresults,withoutexploringthetechnicaldetailsthataccompanyanexplicittreatmentofthereservoir.[50]3Equilibriuminformationfromnonequilibrium uctuationsThermodynamicsaccustomsustotheideathatirreversibleprocessesaredescri-bedbyinequalities,suchasWF.Oneofthesurprisesofrecentyearsisthatifwepayattentionto uctuations,thensuchrelationshipscanberecastasequalities.Inparticular,thenonequilibriumworkrelation[6,7]statesthathe�W=kBTi=e�F=kBT;(15)where(asabove)Tistheinitialtemperatureofthesystemandthermalreservoir,andangularbracketsdenoteanensembleaverageoverrealizationsoftheprocess.Thisresulthasbeenderivedinvariousways,usinganassortmentofequationsofmotiontomodelthemicroscopicdynamics[6,7,8,17,18,9,51,52,50,53,54,55,56,57,58,59,60,61,62,63],andhasbeencon rmedexperimentally.[64,65,66,67]InthefollowingparagraphIwillsketchhowitcanbeobtainedforthetoymodelofFig.1.Imaginethatafterpreparingthesysteminequilibriumat=Awedisconnectitfromthethermalreservoir.Thenfromt=0tot=thethree-particlesystemofinterestevolvesundertheHamiltonianH(x;(t))(Eq.7)aswedisplacethefourthparticlefrom=AtoBusingaprotocol(t).Arealizationofthisprocessisdescribedbyatrajectoryxtx(t)obeyingHamilton'sequations.CombiningEq.9withtheidentitydH=dt=@H=@t(seeRef.[68],section8-2),wegetW=H(x;B)�H(x0;A).WethenevaluatetheleftsideofEq.15byaveragingoverinitialconditions,usingEq.10:he�W=kBTi=Zdx0peqA;T(x0)e�W=kBT=1 ZA;TZdx @x @x0 �1e�H(x;B)=kBT=ZB;T ZA;T:(16) Vol.XVLeTemps,2010IrreversibilityandtheSecondLawofThermodynamicsattheNanoscale85asimmediatelyfromEq.15:[31]P[WF�]ZF��1dW(W)ZF��1dW(W)e(F��W)=kBTe(F�)=kBTZ+1�1dW(W)e�W=kBT=e�=kBT(20)Here,PistheprobabilitytoobserveavalueofworkthatfallsbelowF�,whereisanarbitrarypositivevaluewithunitsofenergy.Eq.20tellsusthatthelefttailofthedistribution(W)becomesexponentiallysuppressedinthethermodynamicallyforbiddenregionWF,abitliketheevanescentpieceofaquantum-mechanicalwavefunctioninaclassicallyforbiddenregion.ThuswehavenohopetoobserveavalueofworkthatfallsmuchmorethanafewkBTbelowF.Thisisgratifyinglyconsistentwitheverydayexperience,whichteachesusnotonlythatthesecondlawissatis edonaverage,inthesenseofEq.19,butthatitisneverviolatedonamacroscopicscale.Forsucientlyslowvariationoftheworkparameter,thecentrallimittheoremsuggeststhat(W)isapproximatelyGaussian.InthiscaseEq.15implies[6]F=hWi�2W 2kBT(21)where2Wisthevarianceoftheworkdistribution.Thisistheresultthatoneexpectsfromlinearresponsetheory.[73,74,75,76]BecauseEq15unequivocallyimpliesthathWiF,itmightat rstglanceappearthatthisrepresentsamicroscopic, rst-principlesderivationofthesecondlaw,andthusclari esthemicroscopicoriginsofirreversibility.Thisisnotthecase,however.InallderivationsofEq.15andrelatedworkrelations(e.g.Eqs.25,30,31),thearrowoftimeise ectivelyinsertedbyhand.Speci cally,aquitespecialstatisticalstate(theBoltzmann-Gibbsdistribution,peq)isassumedtodescribethesystemataparticularinstantintime(t=0),andattentionisthenfocusedonthesystem'sevolutionatlatertimesonly(t�0).Ifinsteadtheevolutionofthesystemleadinguptotheequilibriumstateatt=0hadbeenconsidered,thenalltheinequalitiesassociatedwiththesecondlawwouldhavebeenobtained,butwiththeirsignsreversed.Thisemphasizestheimportanceofboundaryconditions(intime),andtouchesonthedeepconnectionbetweenirreversibilityandcausality[77,78,79].Gibbsalreadyrecognizedthatifoneacceptsaninitialequilibriumstategivenbypeq/e�H=kBT,thenvariousstatementsofthesecondlawfollowfrompropertiesofHamiltoniandynamics(seeChapterXIIIofRef.[80]).Similarresultscanbeobtainediftheinitialequilibriumstateisrepresentedbyanydistributionthatisadecreasingfunctionofenergy[81].Interestingly,however,foramicrocanonicalinitialdistribution,inequalitiesrelatedtothesecondlawofthermodynamicscanbeviolated,atleastforsystemswithonedegreeoffreedom[82,83].Letusnowreturntothepictureofourensembleasaswarmoftrajectories, Vol.XVLeTemps,2010IrreversibilityandtheSecondLawofThermodynamicsattheNanoscale87ratherthancomplexphases.Inthequantum-mechanicalcase,thesumoverpathsproducesasolutiontotheSchrodingerequation,whileherewegettheconstruc-tionofanequilibriumdistributionfromnonequilibriumtrajectories.HummerandSzabo[9]haveusedEq.25toderiveamethodofconstructinganequilibriumpoten-tialofmeanforce(afreeenergypro lealongareactioncoordinatethatdi ersfromtheworkparameter)fromnonequilibriumdata.Thismethodhasbeencon rmedexperimentallybyBerkovichetal.[85]4MacroscopichysteresisandmicroscopicsymmetryThesecondlawofthermodynamicsismanifestednotonlybyinequalitiessuchasWF,butalsobythetime-asymmetryinherenttoirreversibleprocesses.Hysteresisloopsneatlydepictthisasymmetry.Asanexample,imaginethatwera-pidlystretchanordinaryrubberband,thenafterasucientpausewecontractit,returningtotheinitialstate.ForthisprocesswegetaclassichysteresisloopbyplottingthetensionTversusthelengthLoftherubberband(Fig.2).Hysteresisconveystheideathatthestateoftherubberbandfollowsonepathduringthestret-chingstage,butreturnsalongadi erentpathduringcontraction.Quantitatively,thesecondlawimpliesthattheenclosedareaisnon-negative,HTdL0.Similarconsiderationsapplytotheanalogousstretchingandcontractionofsinglemolecules[86],onlynowstatistical uctuationsbecomeimportant:theran-domjigglingsofthemoleculedi erfromonerepetitionoftheprocesstothenext.Intheprevioussectionwesawthatwhen uctuationsaretakenintoaccount,therela-tionshipbetweenworkandfreeenergycanbeexpressedasanequalityratherthantheusualinequality.Thecentralmessageofthepresentsectionhasasimilarring:withanappropriateaccountingof uctuations,thetwobranchesofanirreversiblethermodynamiccycle(e.g.thestretchingandcontractionofthesinglemolecule)aredescribedbyunexpectedsymmetryrelations(Eqs.30,31)ratherthanexclusivelybyinherentasymmetry(Eqs.28,35).Todeveloptheseresults,itisusefultoimaginetwodistinctprocesses,designatedtheforwardandthereverseprocess.[8]Theforwardprocessistheonede nedinSec.2,inwhichtheworkparameterisvariedfromAtoBusingaprotocolF(t)(thesubscriptFhasbeenattachedasalabel).Duringthereverseprocess,isvariedfromBtoAusingthetime-reversedprotocol,R(t)=F(�t):(27)Atthestartofeachprocess,thesystemispreparedintheappropriateequilibriumstate,correspondingto=AorB,attemperatureT.Ifweperformthetwoprocessesinsequence,theforwardfollowedbythereverse,allowingthesystemtoequilibratewiththereservoirattheendofeachprocess,thenwehaveathermody-namiccyclethatexhibitshysteresis.TheClausiusinequalityappliesseparatelytoeachstage:�hWiRFhWiF(28)whereFisde nedasbefore(Eq.5)andthenotationnowspeci esseparateaveragesoverthetwoprocesses.Ofcourse,Eq.28impliesthattheaverageworkovertheentirecycleisnon-negative,hWiF+hWiR0:(29) Vol.XVLeTemps,2010IrreversibilityandtheSecondLawofThermodynamicsattheNanoscale91processes.WecanthenusetherelativeentropyD[PFjPR]toassignavaluetotheextenttowhichthesystem'sevolutionduringoneprocessdi ersfromthatduringtheother.FromEq.31itfollowsthat[79]D[PFjPR]=WdissF kBT(38)whereWdissFhWiF�F(39)istheaverageamountofworkthatisdissipatedduringtheforwardprocess.(Simi-larly,D[PRjPF]=WdissR=kBT.)Whiledistributionsintrajectoryspaceareabstractanddiculttovisualize,aresultsimilartoEq.38canbeplacedwithinthemorefamiliarsettingofphasespace.LetfF(x;t)denotethetime-dependentphasespacedensitydescribingtheevolutionofthesystemduringtheforwardprocess(Eq.22),andde nefR(x;t)analogouslyforthereverseprocess.ThenthedensitiesfF(x;t1)andfR(x;�t1)aresnapshotsofthestatisticalstateofthesystemduringthetwoprocesses,bothtakenatthemomenttheworkparameterachievesthevalue1F(t1)=R(�t1).TheinequalityfF(x;t1)6=fR(x;�t1)(40)thenexpressestheideathatthestatisticalstateofthesystemisdi erentwhentheworkparameterpassesthroughthevalue1duringtheforwardprocess,thanwhenitreturnsthroughthesamevalueduringthereverseprocess.(Thereversalofmomentainxisrelatedtotheconjugatepairingoftrajectories,Eq.32.)Evaluatingtherelativeentropybetweenthesedistributions,Kawai,ParrondoandVandenBroeck[93]foundthatD[fFjfR]WdissF kBT;(41)wheretheargumentsofDarethedistributionsappearinginEq.40,foranychoiceof1.Thisbecomesanequalityifthesystemisisolatedfromthethermalenvironmentastheworkparameterisvariedduringeachprocess.AswithEq.38,weseethataninformation-theoreticmeasureofthedi erencebetweentwodistributions,fFandfR,isrelatedtoaphysicalmeasureofdissipation,WdissF=kBT.Eqs.38and41arecloselyrelated.Thephase-spacedistributionfF=fF(x;t1)istheprojectionofthetrajectory-spacedistributionPF[ F]ontoasingle\timeslice",t=t1,andsimilarlyforfR.Sincetherelativeentropybetweentwodistributionsdecreaseswhentheyareprojectedontoasmallersetofvariables[91,93]{inthiscase,fromtrajectoryspacetophasespace{wehaveD[fFjfR]D[PFjPR]=WdissF kBT:(42)Intheabovediscussion,relativeentropyhasbeenusedtoquantifythedi erencebetweentheforwardandreverseprocesses(hysteresis).Itcanequallywellbeusedtomeasurehowfarasystemisremovedfromequilibriumatagiveninstantintime,leadingagaintoalinkbetweenrelativeentropyanddissipatedwork(Eq.43below).FortheprocessintroducedinSec.2,letftf(x;t)denotethestatisticalstateofthesystemattimet,andletpeqtpeq(t);T(x)betheequilibriumstatecorresponding Vol.XVLeTemps,2010IrreversibilityandtheSecondLawofThermodynamicsattheNanoscale93Todiscussthispoint,itisconvenienttoconsiderahypotheticalguessinggame[79].ImaginethatIshowyouamovieinwhichyouobserveasystemundergoingathermodynamicprocessasisvariedfromAtoB.Yourtaskistoguesswhe-therthismoviedepictstheeventsintheorderinwhichtheyactuallyoccurred,orwhetherIhave lmedthereverseprocess(varyingfromBtoA)andamnow(deviously)showingyouthemovieofthatprocess,runbackward.InthespiritofaGedankenexperiment,assumethatthemoviegivesyoufullmicroscopicinformationaboutthesystem{youcantrackthemotionofeveryatom{andthatyouknowtheHamiltonianfunctionH(x;)andthevalueF=FB;T�FA;T.Assumemoreoverthatinchoosingwhichprocesstoperform,I ippedafaircoin:heads=F,tails=R.Wecanformalizethistaskasanexerciseinstatisticalinference.[95]LetL(Fj )denotethelikelihoodthatthemovieisbeingshowninthecorrectdirection(i.e.thecoinlandedonheadsandtheforwardprocesswasperformed),giventhemicroscopictrajectory thatyouobserveinthemovie.Similarly,letL(Rj )denotethelikelihoodthatthereverseprocesswasinfactperformedandthemovieisnowbeingrunbackward.Sincethesearetheonlypossibilities,thelikelihoodsassociatedwiththetwohypotheses(F,R)sumtounity:L(Fj )+L(Rj )=1(46)NowletWdenotetheworkperformedonthesystem,forthetrajectorydepictedinthemovie.IfW�F,thenthe rsthypothesis(F)isinagreementwiththeClausiusinequality,whilethesecondhypothesis(R)isnot;ifWF,itistheotherwayaround.Thereforeforamacroscopicsystemthetaskiseasy,asthesignofW�Fdeterminesthedirectionoftime'sarrow.Formally,L(Fj )=(W�F)(47)where()istheunitstepfunction.ForamicroscopicsystemwemustallowforthepossibilitythatEq.5mightbeviolatednowandagain.Bayes'Theoremthenprovidestherighttoolforanalyzingthelikelihood:L(Fj )=P( jF)P(F) P( ):(48)HereP(F)isthepriorprobabilitythatIcarriedouttheforwardprocess,whichissimply1=2sinceI ippedafaircointomakemychoice,andP( jF)istheprobabilitytogeneratethetrajectory whenperformingtheforwardprocess;inthenotationofSec.4,thisisPF[ ].Finally,P( )is(e ectively)anormalizationconstant.WritingtheanalogousformulaforL(Rj ),thencombiningthesewiththenormalizationconditionEq.46andinvokingEq.31,weget[97,98,31]L(Fj )=1 1+e�(W�F)=kBT:(49)Thisresultquanti esyourabilitytodeterminethearrowoftimefromthetrajectorydepictedinthemovie.Theexpressionontherightisasmoothedstepfunction.IftheWsurpassesFbymanyunitsofkBT,thenL(Fj )1andyoucansaywithhighcon dencethatthemovieisbeingshowninthecorrectdirection,whileintheoppositecaseyoucanbeequallycon dentthatthemovieisbeingrunbackward. Vol.XVLeTemps,2010IrreversibilityandtheSecondLawofThermodynamicsattheNanoscale95equilibrium.[99]Esposito,LindenbergandVandenBroeckhaverecentlyshownthatinthissituationthevalueofStotisequaltothestatisticalcorrelationthatdevelopsbetweenthesystemandthereservoirs,asmeasuredintermsofrelativeentropy.[100]TheHamiltonianframeworkisofteninconvenientforstudyingnonequilibriumsteadystates.Amongthemanytoolsthathavebeenintroducedforthetheoreticalanalysisandnumericalsimulationofsuchstates,Gaussianthermostats{thetermreferstoamethodofmodelingnonequilibriumsystemsbasedonGauss'sprincipleofleastconstraint[101]{haveplayedaprominentroleinrecentdevelopmentsinnonequilibriumthermodynamics.Theterm uctuationtheoremwasoriginallyappliedtoapropertyofentropyproduction,observedinnumericalinvestigationsofasheared uidsimulatedusingaGaussianthermostat[10,11,12,13].Since uctuationtheoremsforentropyproductionhavebeenreviewedelsewhere[21,22,24,29,30,32,33,35,36],IwilllimitmyselftoabriefsummaryofhowtheseresultsconnecttothoseofSections3-6.Thetransient uctuationtheoremofEvansandSearles[11]appliestoasystemthatevolvesfromaninitialstateofequilibriumtoanonequilibriumsteadystate.Lettingp(s)denotetheprobabilitydistributionoftheentropyproduceduptoatime�0,itstatesthatp(+s) p(�s)=es=kB:(51)ThisisclearlysimilartoEq.30,exceptthatitpertainstoasinglethermodynamicprocess,ratherthanapairofprocesses(FandR).Eq.51impliesanintegrated uctuationtheorem,he�s=kBi=1;(52)thatisentirelyanalogoustoEq.15,andfromthisweinturngetanaloguesofEqs.19and20:hsi0;P[s�]e�=kB(53)Nowconsiderasystemthatisinanonequilibriumsteadystatefromthedistantpasttothedistantfuture,suchasa uidunderconstantshear[10],andlets=denotetheentropyproductionrate,time-averagedoverasingle,randomlysampledintervalofduration.Thesteady-state uctuationtheoremofGallavottiandCohen[12,13]assertsthattheprobabilitydistributionp()satis eslim!11 lnp(+) p(�)= kB:(54)Theintegratedformofthisresultis[21]lim!11 ln e�=kB =0;(55)wherethebracketsdenoteanaverageoverintervalsofduration,inthesteadystate.Formalmanipulationsthengiveushi0;lim!11 lnP[�]�;(56)whereP[�]istheprobabilitytoobserveatime-averagedentropyproductionratelessthan�,duringanintervalofduration.TheresemblancebetweenEqs.54 Vol.XVLeTemps,2010IrreversibilityandtheSecondLawofThermodynamicsattheNanoscale97Itremainstobeseenwhethertheunderstandingoffar-from-equilibrium uc-tuationsthathasbeengainedinrecentyearswillleadtotheformulationofauni ed\thermodynamicsofsmallsystems",thatis,atheoreticalframeworkbasedonafewpropositions,comparabletoclassicalthermodynamics.Someprogress,however,hasbeenmadeinthisdirection.Forstochasticdynamics,Seifertandcolleagues[54,115,116,117,32]{buildingonearlierworkbySekimoto[118,37]{havedevelopedaformalisminwhichmicro-scopicanaloguesofallrelevantmacroscopicquantitiesarepreciselyde ned.Manyoftheresultsdiscussedinthisreviewfollownaturallywithinthisframework,andthishashelpedtoclarifytherelationsamongtheseresults.[32]EvansandSearles[22]havechampionedtheviewthat uctuationtheoremsaremostnaturallyunderstoodintermsofadissipationfunction, ,whosepropertiesare(byconstruction)inde-pendentofthedynamicsusedtomodelthesystemofinterest.Morerecently,GeandQian[119]haveproposedaunifyingframeworkforstochasticprocesses,inwhichboththeinformationentropy�RplnpandtherelativeentropyRpln(p=q)playkeyroles.References[32]and[119]makeaconnectiontoearliere ortsbyOonoandPaniconi[120]todevelopa\steady-statethermodynamics"organizedaroundnone-quilibriumsteadystates.Whiletheoriginalgoalwasaphenomenologicaltheory,thederivationbyHatanoandSasaof uctuationtheoremsfortransitionsbetweensteadystates[19,121]hasencouragedamicroscopicapproachtothisproblem.[122,123]IntheabsenceofauniversalstatisticaldescriptionofsteadystatesanalogoustotheBoltzmann-Gibbsformula(Eq.10)thishasproventobehighlychallenging.Thisreviewhasfocusedexclusivelyonclassical uctuationtheoremsandworkrelations,butthequantumcaseisalsoofconsiderableinterest.Whilequantumversionsoftheseresultshavebeenstudiedforsometime[124,125,126,127],thepasttwotothreeyearshaveseenasurgeofinterestinthistopic[128,129,130,131,132,133,134,135,136,137,138,139,140,141,142].Quantummechanicsofcourseinvolvesprofoundissuesofinterpretation.Itcanbehopedthatintheprocessoftryingtospecifythequantum-mechanicalde nitionofwork[132],ordealingwithopenquantumsystems[131,137,138,139,140,141,142],oranalyzingexactlysolvablemodels[130,133,135,136],orproposingandultimatelyperformingexperimentstotestfar-from-equilibriumpredictions[134],importantinsightswillbegained.Applicationsofnonequilibriumworkrelationstothedetectionofquantumentanglement[143]andtocombinatorialoptimizationusingquantumannealing[144]haveveryrecentlybeenproposed.Finally,therehasbeenarekindledinterestinrecentyearsinthethermodyna-micsofinformation-processingsystemsandcloselyrelatedtopicssuchastheappa-rentparadoxofMaxwell'sdemon[145].Makinguseoftherelationsdescribedinthisreview,anumberofauthorshaveinvestigatedhownonequilibrium uctuationsandthesecondlawarea ectedinsituationsinvolvinginformationprocessing,suchasoccurinthecontextofmemoryerasureandfeedbackcontrol.[146,147,148,149,150]AcknowledgmentsIgratefullyacknowledge nancialsupportfromtheNationalScienceFoundation(USA),underDMR-0906601.ThisarticlewillappearinAnnu.Rev.Cond.Mat.Phys. Vol.XVLeTemps,2010IrreversibilityandtheSecondLawofThermodynamicsattheNanoscale99[34]EvansDJ.,MorrissG.:StatisticalMechanicsofNonequilibriumLiquids.2nded.CambridgeUniversityPress,Cambridge(2008).[35]EspositoM.,HarbolaU.,MukamelS.:2009.Rev.Mod.Phys.81,1665{1702(2009).[36]KurchanJ.:LectureNotesoftheLesHouchesSummerSchool:Volume90,August2008(arXiv:0901.1271v2)(2010).[37]SekimotoK.:StochasticEnergetics.LectureNotesinPhysics799.Springer,Berlin(2010).[38]BoksenbojmE.,WynantsB.,JarzynskiC.:PhysicaA(2010),(inpress)[39]FinnCBP.:ThermalPhysics.2nded.ChapmanandHall,London(1993).[40]UhlenbeckGE.,FordGW.:LecturesinStatisticalMechanics.AmericanMath-ematicalSociety,Providence(1963).Chapter1,Section7.[41]JarzynskiC.:ActaPhys.Pol.B29,1609{22(1998).[42]JarzynskiC.:C.R.Physique8,495{506(2007).[43]VilarJMG.,RubiJM.:Phys.Rev.Lett.100,020601/1{4(2008).[44]PelitiL.:J.Stat.Mech.:TheoryandExperimentP05002/1{9(2008).[45]PelitiL.:Phys.Rev.Lett.101,098901(2008).[46]VilarJMG.,RubiJM.:Phys.Rev.Lett.101,098902(2008).[47]HorowitzJ.,JarzynskiC.:Phys.Rev.Lett.101,098903(2008).[48]VilarJMG.,RubiJM.:Phys.Rev.Lett.101,098904(2008).[49]ZimanyiEN.,SilbeyRJ.:J.Chem.Phys.130,171102/1{3(2009).[50]JarzynskiC.:J.Stat.Mech.:TheoryandExperimentP09005/1{13(2004).[51]SunSX.:J.Chem.Phys.118,5769{75(2003).[52]EvansDJ.:Mol.Phys.101,1551{45(2003).[53]ImparatoA.,PelitiL.:Europhys.Lett.70,740{46(2005).[54]SeifertU.:Phys.Rev.Lett.95,040602/1{4(2005).[55]OberhoferH.,DellagoC.,GeisslerPL.:J.Chem.Phys.109,6902{15(2005).[56]CuendetMA.:Phys.Rev.Lett.96,120602/1{4(2006).[57]CuendetMA.:J.Chem.Phys.125,144109/1{12(2006).[58]Scholl-PaschingerE.,DellagoC.:J.Chem.Phys.125,054105/1{5(2006).[59]ChelliR.,MarsiliS.,BarducciA.,ProcacciP.:2007.Phys.Rev.E75,050101(R)/1{4(2007).[60]GeH.,QianM.:J.Math.Phys.48,053302/1{11(2007).[61]GeH.,JiangD-Q.:J.Stat.Phys.131,675{89(2008).[62]WilliamsSR.,SearlesDJ.,EvansDJ.:Phys.Rev.Lett.100,250601/1{4(2008).[63]ChetriteR.,GawedzkiK.:Commun.Math.Phys.282,469{518(2008).[64]LiphardtJ.,DumontS.,SmithSB.,TinocoIJr.,BustamanteC.:Science296,1832{35(2002).[65]DouarcheF.,CilibertoS.,PetrosyanA.:J.Stat.Mech.:TheoryandExperi-mentP09011/1{18(2005). Vol.XVLeTemps,2010IrreversibilityandtheSecondLawofThermodynamicsattheNanoscale101[92]QianH.:Phys.Rev.E63,042103/1{4(2001).[93]KawaiR.,ParrondoJMR.,VandenBroeckC.:Phys.Rev.Lett.98,080602/1{4(2007).[94]VaikuntanathanS.,JarzynskiC.:EPL87,60005/1{6(2009).[95]FengEH.,Crooks,GE.:Phys.Rev.Lett.101,090602/1{4(2008).[96]EddingtonAS.:TheNatureofthePhysicalWorld.Macmillan(1928).[97]ShirtsME.,BairE.,HookerG.,PandeVS.:Phys.Rev.Lett.91,140601/1{4(2003).[98]MaragakisP.,RitortF.,BustamanteC.,KarplusM.,CrooksGE.:J.Chem.Phys.129,024102/1{8(2008).[99]JarzynskiC.:J.Stat.Phys.96,415{27(1999).[100]EspositoM.,LindenbergK.,VandenBroeckC.:NewJ.Phys.12,013013/1{10(2010).[101]EvansDJ.,HooverWG.,FailorBH.,MoranB.,LaddAJC.:Phys.Rev.A28,1016{21(1983).[102]TouchetteH.:Phys.Reports478,1{69(2009).[103]ChernyakVY.,ChertkovM.,JarzynskiC.:J.Stat.Mech.:TheoryandExper-imentP08001/1{19(2006).[104]EspositoM.,VandenBroeckC.:Phys.Rev.Lett.104,090601/1{4(2010).[105]MaesC.,NetocnyK.:J.Stat.Phys.110,269{310(2003).[106]GaspardP.:J.Stat.Phys.117,599{615(2004).[107]ParkS.,SchultenK.:J.Chem.Phys.120,5946{61(2004).[108]ChipotC.,PohorilleA.:FreeEnergyCalculations.Springer,Berlin(2007).[109]ChamiF.,WilsonMR.:J.Am.Chem.Soc.132,7794{7802(2010).[110]BustamanteC.:Quar.Rev.Biophys.38,291{301(2005).[111]HarrisNC.,SongY.,KiangC-H.:Phys.Rev.Lett.99,068101/1{4(2007).[112]GreenleafWJ.,FriedaKL.,FosterDAN.,WoodsideMT.,BlockSM.:Science319,630{33(2008).[113]JunierI.,MossaA.,ManosasM.,RitortF.:Phys.Rev.Lett.102,070602/1{4(2009).[114]ShankEA.,CecconiC.,DillJW.,MarquseeS.,BustamanteC.:Nature465,637{41(2010).[115]SpeckT.,SeifertU.:J.Phys.A:Math.Gen.38,L581{88(2005).[116]SchmiedlT.,SeifertU.:J.Chem.Phys.126,044101/1{12(2007).[117]SchmiedlT.,SpeckT.,SeifertU.:J.Stat.Phys.128,77{93(2007).[118]SekimotoK.:Prog.Theor.Phys.Suppl130,17{27(1998).[119]GeH.,QianH.:Phys.Rev.E81,051133/1{5(2010).[120]OonoY.,PaniconiM.:Prog.Theor.Phys.Suppl130,29{44(1998).[121]TrepagnierEH.,JarzynskiC.,RitortF.,CrooksGE.,BustamanteCJ.,LiphardtJ.:Proc.Natl.Acad.Sci.(USA)101,15038{41(2004).

Related Contents

Next Show more