/
178S.NonnenmacherSeminairePoincare 178S.NonnenmacherSeminairePoincare

178S.NonnenmacherSeminairePoincare - PDF document

pamella-moone
pamella-moone . @pamella-moone
Follow
361 views
Uploaded On 2016-03-19

178S.NonnenmacherSeminairePoincare - PPT Presentation

Figure1TwoeigenfunctionsoftheDirichletLaplacianinthestadiumbilliardwithwavevectorsk60196andk60220see9Largevaluesofj xj2correspondtodarkregionswhilenodallinesarewhiteWhilethelefteigenfun ID: 262243

Figure1:TwoeigenfunctionsoftheDirichletLaplacianinthestadiumbilliard withwavevectorsk=60:196andk=60:220(see(9)).Largevaluesofj (x)j2correspondtodarkregions whilenodallinesarewhite.Whilethelefteigenfun

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "178S.NonnenmacherSeminairePoincare" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

178S.NonnenmacherSeminairePoincare Figure1:TwoeigenfunctionsoftheDirichletLaplacianinthestadiumbilliard,withwavevectorsk=60:196andk=60:220(see(9)).Largevaluesofj (x)j2correspondtodarkregions,whilenodallinesarewhite.Whilethelefteigenfunctionlooksrelatively\ergodic",therightoneisscarredbytwosymmetricperiodicorbits(seex4.2).Thesenotesareorganizedasfollows.Weintroduceinsection2theclassicaldynamicalsystemswewillfocuson(mostlygeodesic owsandmapsonthe2-dimensionaltorus),mentioningtheirdegreeof\chaos".Wealsosketchthequantiza-tionproceduresleadingtoquantumHamiltoniansorpropagators,whoseeigenstateswewanttounderstand.Wealsomentionsomepropertiesofthesemiclassical/high-frequencylimit.Insection3wedescribethemacroscopicpropertiesoftheeigen-statesinthesemiclassicallimit,embodiedbytheirsemiclassicalmeasures.Thesepropertiesincludethequantumergodicityproperty,whichforsomesystems(witharithmeticsymmetries)canbeimprovedtoquantumuniqueergodicity,namelythefactthatallhigh-frequencyeigenstatesare\ at"atthemacroscopicscale;ontheopposite,somespeci csystemsallowthepresenceofexceptionallylocalizedeigen-states.Insection4wefocusonmorere nedpropertiesoftheeigenstates,manyofstatisticalnature(valuedistribution,correlationfunctions).Verylittleisknownrigorously,soonehastoresorttomodelsofrandomwavefunctionstodescribethesestatisticalproperties.ThelargevaluesofthewavefunctionsorHusimidensitiesarediscussed,includingthescarphenomenon.Section5discussesthemost\quantum"ormicroscopicaspectoftheeigenstates,namelytheirnodalsets,bothinpositionandphasespace(Husimi)representations.Hereaswell,therandomstatemodelsarehelpful,andleadtointerestingquestionsinprobabilitytheory.2Whatisaquantumchaoticeigenstate?Inthissectionwe rstpresentageneralde nitionofthenotionof\chaoticeigen-states".Wethenfocusourattentiontogeodesic owsonEuclideandomainsoroncompactriemannianmanifolds,whichformthesimplestsystemsprovedtobechaotic.Finallywepresentsomediscretetimedynamics(chaoticcanonicalmapsonthe2-dimensionaltorus).2.1AshortreviewofquantummechanicsLetusstartbyrecallingthatclassicalmechanicsonthephasespaceTRdcanbede ned,intheHamiltonianformalism,byarealvaluedfunctionH(x;p)onthatphasespace,calledtheHamiltonian.Wewillalwaysassumethesystemtobeautonomous,namelythefunctionHtobeindependentoftime.Thisfunctionthen Vol.XIV,2010Anatomyofquantumchaoticeigenstates179generatesthe ow2(x(t);p(t))=tH(x(0);p(0));t2R;bysolvingHamilton'sequations:_xj(t)=@H @pj(x(t);p(t));_pj=�@H @xj(x(t);p(t)):(1)This owpreservesthesymplecticformPjdpj^dxj,andtheenergyshellsEE=H�1(E).Thecorrespondingquantummechanicalsystemisde nedbyanoperator^H~actingonthe(quantum)HilbertspaceH=L2(Rd;dx).Thisoperatorcanbefor-mallyobtainedbyreplacingcoordinatesx;pbyoperators:^H~=H(^x~;^p~);(2)where^x~istheoperatorofmultiplicationbyx,whilethemomentumoperator^p~=~ ir,isconjugateto^xthroughthe~-FouriertransformF~.Thenotation(2)assumesthatonehasselectedacertainorderingbetweentheoperators^x~and^p~;inphysicsoneusuallychoosesthefullysymmetricordering,alsocalledtheWeylquantization:ithastheadvantagetomake^H~aself-adjointoperatoronL2(Rd).Quantizationprocedurescanalsobede nedwhentheEuclideanspaceRdisreplacedbyacompactmanifoldM.Wewillnotdescribeitinanydetail.Thequantumdynamics,whichgovernstheevolutionofthewavefunction (t)2Hdescribingthesystem,isthengivenbytheSchrodingerequation:i~@ (x;t) @t=[^H~ ](x;t):(3)Solvingthislinearequationproducesthepropagator,thatisthefamilyofunitaryoperatorsonL2(Rd),Ut~=exp(�i^H~=~);t2R:Remark1Inphysicalsystems,Planck'sconstant~isa xednumber,whichisoforder10�34inSIunits.However,ifthesystem(atom,molecule,\quantumdot")isitselfmicroscopic,thevalueof~maybecomparablewiththetypicalactionofthesystem,inwhichcaseitismorenaturaltoselectunitsinwhich~=1.Ourpointofviewthroughoutthisworkwillbetheopposite:wewillassumethat~is(very)smallcomparedwiththetypicalactionofthesystem,andmanyresultswillbevalidasymptotically,inthesemiclassicallimit~!0.2.2Quantum-classicalcorrespondenceAtthispoint,letusintroducethecrucialsemiclassicalpropertyofthequantumevo-lution:itiscalled(inthephysicsliterature)thequantum-classicalcorrespondence,whileinmathematicsthisresultisknownasEgorov'stheorem.Thispropertystatesthattheevolutionofobservablesapproximatelycommuteswiththeirquantization.Forus,anobservableisasmooth,compactlysupportedfunctiononphasespace 2Wealwaysassumethatthe owiscomplete,thatisitdoesnotblowupin nitetime. Vol.XIV,2010Anatomyofquantumchaoticeigenstates181quantumsystem,isthatmosteigenstatesareeitherlocalizedintheregularregion,orinthechaoticsea[80].Tomyknowledgethisconjectureremainsfullyopenatpresent,inpartduetoourlackofunderstandingoftheclassicaldynamics.Forthisreason,Iwillrestrictmyself(asmostresearchesinquantumchaosdo)tothecaseofsystemsadmittingapurelychaoticdynamicsonEE.Iwillallowvariousdegreesofchaos,theminimalassumptionbeingtheergodicityofthe owtHonEE,withrespecttothenatural(Liouville)measureonEE.Thisassumptionmeansthat,foralmostanyinitialpositionx02EE,thetimeaveragesofanyobservablefconvergetoitsphasespaceaverage:limT!11 2TZT�Tf(t(x0))dt=ZEEf(x)dL(x)def=Zf(x)(H(x)�E)dx:(6)Astrongerchaoticpropertyisthemixingproperty,ordecayoftimecorrelationsbetweentwoobservablesf;g:Cf;g(t)def=ZEEg(ft)dL�ZfdLZgdLt!1���!0:(7)Therateofmixingdependsonboththe owtandtheregularityoftheobservablesf;g.Forverychaotic ows(Anosov ows,seex2.4.2)andsmoothobservables,thedecayisexponential.2.4GeometricquantumchaosInthissectionwegiveexplicitexamplesofchaotic ows,namelygeodesic owsinaEuclideanbilliard,oronacompactmanifold.Thedynamicsistheninducedbythegeometry,ratherthanapotential.Boththeclassicalandquantumpropertiesofthesesystemshavebeeninvestigatedalotinthepast30years.2.4.1BilliardsThesimplestformofergodicsystemoccurswhenthepotentialV(x)isanin nitebarrierdelimitingaboundeddomain Rd(say,withpiecewisesmoothboundary),sothattheparticlemovesfreelyinside andbouncesspecularlyattheboundaries.Forobviousreasons,suchasystemiscalledaEuclideanbilliard.Allpositiveenergyshellsareequivalenttooneanother,uptoarescalingofthevelocity,sowemayrestrictourattentiontotheshellE=f(x;p);x2 ;jpj=1g.Thelongtimedynamicalpropertiesonlydependontheshapeofthedomain.Forinstance,in2dimensions,arectangular,circularorellipticbilliardsleadtoanintegrabledynamics:the owadmitstwoindependentintegralsofmotion|inthecaseofthecircle,theenergyandtheangularmomentum.Aconvexbilliardwithasmoothboundarywillalwaysadmitsomestable\whisperinggallery"stableorbits.Ontheopposite,thefamousstadiumbilliard(seeFig.2)wasprovedtobeergodicbyBunimovich[32].Historically,the rstEuclideanbilliardprovedtobeergodicwastheSinaibilliard,composedofoneorseveralcircularobstaclesinsideasquare(ortorus)[91].ThesebilliardsalsohavepositiveLyapunovexponents(meaningthatalmostalltrajectoriesareexponentiallyunstable,seetheleftpartofFig.2).Ithasbeenshownmorerecentlythatthesebilliardsaremixing,butwithcorrelationsdecayingatpolynomialorsubexponentialrates[34,14,73]. Vol.XIV,2010Anatomyofquantumchaoticeigenstates183E�x.Thestable(resp.unstable)subspaceisde nedbythepropertythatthe owcontractsvectorsexponentiallyinthefuture(resp.inthepast),seeFig.3:8v2Ex;8t�0;kdtxvkCe�tkvk:(10)Anosovsystemspresentthestrongestformofchaos,buttheirergodicpropertiesare(paradoxically)betterunderstoodthanforthebilliardsoftheprevioussection.The owhasapositivecomplexity,re ectedintheexponentialproliferationoflongperiodicgeodesics.Forthisreason,thisgeometricmodelhasbeenatthecenterofthemathematicalinvestigationsofquantumchaos,inspiteofitsminorphysicalrelevance.Generalizing Figure3:Topleft:geodesic owonasurfaceofnegativecurvature(suchasurfacehaveagenus2).Right:fundamentaldomainforan\octagon"surface�nHofconstantnegativecurvature(the gureisduetoC.McMullen)Bottonleft:aphasespacetrajectoryandtwonearbytrajectoriesapproachingitinthefutureorpast.Thestable/unstabledirectionsatxandt(x)areshown.Theredlinesfeaturetheexpansionalongtheunstabledirection,measuredbytheunstableJacobianJut(x)=det(dtE+x).thecaseoftheEuclideanbilliards,thequantizationofthegeodesic owon(M�g)isgivenbythe(semiclassical)Laplace-Beltramioperator,^H~=�~2g 2;(11)actingontheHilbertspaceisL2(M;dx)associatedwiththeLebesguemeasure.Theeigenstatesof^H~witheigenvalues1=2(equivalently,thehigh-frequencyeigen-statesof�g)constituteaclassofquantumchaoticeigenstates,whosestudyisnotimpededbyboundaryproblemspresentinbilliards.ThespectralpropertiesofthisLaplacianhaveinterestedmathematicianswork-inginriemanniangeometry,PDEs,analyticnumbertheory,representationtheory,foratleastacentury,whilethespeci c\quantumchaotic"aspectshaveemergedonlyinthelast30years.The rstexampleofamanifoldwithnegativecurvatureisthePoincarehalf-space(ordisk)Hwithitshyperbolicmetricdx2+dy2 y2,onwhichthegroupSL2(R) 184S.NonnenmacherSeminairePoincareactsisometricallybyMoebiustransformations.Forcertaindiscretesubgroups�ofPSL2(R)(calledco-compactlattices),thequotientM=�nHisasmoothcompactsurface.ThisgroupstructureprovidesdetailedinformationonthespectrumoftheLaplacian(forinstance,theSelbergtraceformulaexplicitlyconnectsthespectrumwiththeperiodicgeodesicsofthegeodesic ow).Furthermore,forsomeofthesediscretesubgroups�,(calledarithmetic),onecanconstructacommutativealgebraofHeckeoperatorsonL2(M),whichalsocommutewiththeLaplacian;itthenmakesensetostudyinprioritythejointeigenstatesofandoftheseHeckeoperators,whichwewillcalltheHeckeeigenstates.Thisarith-meticstructureprovidesnontrivialinformationontheseeigenstates(seex3.3.3),sotheseeigenstateswillappearseveraltimesalongthesenotes.Theirstudycomposesapartofarithmeticquantumchaos,alively eldofresearch.2.5ClassicalandquantumchaoticmapsBesidetheHamiltonianorgeodesic ows,anothermodelsystemhasattractedmuchattentioninthedynamicalsystemscommunity:chaoticmapsonsomecompactphasespaceP.Insteadofa ow,thedynamicsisgivenbyadiscretetimetransfor-mation:P!P.Becausewewanttoquantizethesemaps,werequirethephasespacePtohaveasymplecticstructure,andthemaptopreservethisstructure(inotherwords,isaninvertiblecanonicaltransformationonP.Theadvantageofstudyingmapsinsteadof owsismultifold.Firstly,amapcanbeeasilyconstructedfroma owbyconsideringaPoincaresectiontransversaltothe ow;theinducedreturnmap:!,togetherwiththereturntime,containallthedynamicalinformationonthe ow.Ergodicpropertiesofchaoticmapsareusuallyeasiertostudythantheir owcounterpart.Forbilliards,thenaturalPoincaremaptoconsideristheboundarymapde nedonthephasespaceassociatedwiththeboundary,T@ .Theergodicofthisboundarymapwereunderstood,andusedtoaddressthecaseofthebilliard owitself[14].Secondly,simplechaoticmapscanbede nedonlow-dimensionalphasespaces,themostfamousonesbeingthehyperbolicsymplectomorphismsonthe2-dimensionaltorus.Thesearede nedbytheactionofamatrixS=abcdwithintegerentries,determinantunityandtracea+d�2(equivalently,Sisunimodularandhyperbolic).Suchamatrixobviouslyactsonx=(x;p)2T2linearly,throughS(x)=(ax+bp;cx+dp)mod1:(12)AschematicviewofSforthefamousArnold'scatmapScat=1112isshowsinFig.5.ThehyperbolicityconditionimpliesthattheeigenvaluesofSareoftheformfegforsome�0.Asaresult,ShastheAnosovproperty:ateachpointx,thetangentspaceTxT2splitsintostableandunstablesubspaces,identi edwiththeeigenspacesofS,andaretheLyapunovexponents.ManydynamicalpropertiesofScanbeexplicitlycomputed.Forinstance,everyrationalpointx2T2isperiodic,andthenumberofperiodicorbitsofperiodngrowslikeen(thusalsomeasuresthecomplexityofthemap).Thislinearityalsoresultsinthefactthatthedecayofcorrelations(forsmoothobservables)issuperexponentialinsteadofexponentialforagenericAnosovdi eomorphism.MoregenericAnosovdi eomorphismsofthe 186S.NonnenmacherSeminairePoincare2-toruscanbeobtainedbysmoothlyperturbingthelinearmapS.Namely,foragivenHamiltonianH2C1(T2),thecomposedmapHSremainsAnosovifissmallenough,duetothestructuralstabilityofAnosovdi eomorphisms. Figure6:Schematicviewofthebaker'smap(13).Thearrowsshowthecontraction/expansiondirections.Anotherfamilyofcanonicalmapsonthetoruswasalsomuchinvestigated,namelytheso-calledbaker'smaps,whicharepiecewiselinear.Thesimplest(sym-metric)baker'smapisde nedbyB(x;p)=((2xmod1;p 2);0x1=2;(2xmod1;p+1 2);1=2x1:(13)Thismapisconjugatedtoaverysimplesymbolicdynamics,namelytheshiftontwosymbols.Indeed,ifoneconsidersthebinaryexpansionsofthecoordinatesx=0; 1 2,p= 1 2,thenthemap(x;p)7!B(x;p)equivalentwiththeshifttotheleftonthebi-in nitesequence 2 1 1 2.Thisconjugacyallowstoeasilyprovethatthemapisergodicandmixing,identifyallperiodicorbits,andprovidealargesetofnontrivialinvariantprobabilitymeasures.Alltrajectoriesnotmeetingthediscontinuitylinesareuniformlyhyperbolic.Simplecanonicalmapshavealsobede nedonthe2-spherephasespace(likethekickedtop),buttheirchaoticpropertieshave,tomyknowledge,notbeenrigorouslyproven.Theirquantizationhasbeenintensivelyinvestigated.2.5.1Quantummapsonthe2-dimensionaltorusAsopposedtothecaseofHamiltonian ows,thereisnonaturalruletoquan-tizeacanonicalmaponacompactphasespaceP.Already,associatingaquantumHilbertspacetothisphasespaceisnotobvious.Therefore,fromtheverybeginning,quantummapshavebeende nedthroughsomewhatarbitrary(orrather,adhoc)procedures,oftenspeci ctotheconsideredmap:P!P.Stilltheserecipesarealwaysrequiredtosatisfyacertainnumberofproperties:oneneedsasequenceofHilbertspaces(HN)N2NofdimensionsN.HereNisinterpretedastheinverseofPlanck'sconstant,inagreementwiththeheuristicsthateachquantumstateoccupiesavolume~dinphasespace.Wealsowanttoquantizeobservablesf2C(P)intohermitianoperators^fNonHN. Vol.XIV,2010Anatomyofquantumchaoticeigenstates187ForeachN1,thequantizationofisgivenbyaunitarypropagatorUN()actingonHN.Thewholefamily(UN())N1iscalledthequantummapasso-ciatedwith.inthesemiclassicallimitN~�1!1,thispropagatorsatis essomeformofquantum-classicalcorrespondence.Namely,forsome(largeenough)familyofobservablesfonP,weshouldhave8n2Z;U�nN^fNUnN=\(fn)N+On(N�1)asN!1.(14)Thecondition(14)istheanalogueoftheEgorovproperty(4)satis edbythepropa-gatorU~associatedwithaquantumHamiltonian,whichquantizesthestroboscopicmapx7!1H(x).Letusbrie ysummarizetheexplicitconstructionofthequantizationsUN(),forthemaps:T2!T2presentedintheprevioussection.Letusstartbycon-structingthequantumHilbertspace.OnecanseeT2asthequotientofthephasespaceTR=R2bythediscretetranslationsx7!x+n;n2Z2.Hence,itisnaturaltoconstructquantumstatesonT2bystartingfromstates 2L2(R),andrequiringthefollowingperiodicityproperties (x+n1)= (x);(F~ )(p+n2)=(F~ )(p);n1;n22Z:Itturnsoutthatthesetwoconditionscanbesatis edonlyif~=(2N)�1,N2N,andthecorrespondingstates(whichareactuallydistributions)thenformavectorspaceHNofdimensionN.AbasisofthisspaceisgivenbytheDiraccombsej(x)=1 p NX2Z(x�j N�);j=0;:::;N�1:(15)ItisnaturaltoequipHNwiththehermitianstructureforwhichthebasisfej;j=0;:::;N�1gisorthonormal.LetusnowexplainhowthelinearsymplectomorpismsSareconstructed[48].GivenaunimodularmatrixS,itsactiononR2canbegeneratedbyaquadraticpolynomialHS(x;p);thisactioncanthusbequantizedintotheunitaryoperatorU~(S)=exp(�i^HS;~=~)onL2(R).ThisoperatoralsoactsondistributionsS0(R),andinparticularonthe nitesubspaceHN.ProvidedthematrixSsatis essome\checkerboardcondition",onecanshow(usinggrouptheory)thattheactionofU~(S)onHNpreservesthatspace,andactsonitthroughaunitarymatrixUN(S).Thefamilyofmatrices(UN(S))N1de nesthequantizationofthemapSonT2.Grouptheoryalsoimpliesthatanexactquantum-classicalcorrespondenceholds(thatis,theremaindertermin(14)vanishes),andhasotherimportantconsequencesregardingtheoperatorsUN=UN(S)(foreachNthematrixUNisperiodic,ofpe-riodTN2N).ExplicitexpressionsforthecoecientsmatricesUN(S)canbeworkedout,theydependsquitesensitivelyonthearithmeticpropertiesofthedi-mensionN.Theconstructionofthequantizedbaker'smap(13)proceedsverydi erently.AnAnsatzwasproposedbyBalasz-Voros[13],withthefollowingform(weassumethatNisaneveninteger):UN(B)=FNFN=2FN=2;(16) Vol.XIV,2010Anatomyofquantumchaoticeigenstates189Thesequestionsleadustothenotionofphasespacelocalization,ormicrolo-calization4.Wewillsaythatthefamilyofstates( ~)ismicrolocalizedinsideasetBT if,foranysmoothobservablef(x;p)vanishingnearB,thematrixelementsh ~;^f~ ~i.decreasefasterthananypowerof~when~!0.Microlocalpropertiesarenoteasytoguessfromplotsofthespatialdensityj j(x)j2likeFig.1,buttheyaremorenaturaltostudyifwewanttoconnectquantumtoclassicalmechanics,sincethelattertakesplaceinphasespaceratherthanpositionspace.Indeed,themajortoolwewilluseisthequantum-classicalcorrespondence(4);forallthe owswewillconsider,anyinitialspatialtestfunctionf(x)evolvesintoagenuinephasespacefunctionft(x;p),soapurelyspatialformalismisnotveryhelpful.Thesemicrolocalpropertiesareeasiertovisualizeon2-dimensionalphasespaces(seebelowthe guresonthe2-torus).3.1ThecaseofcompletelyintegrablesystemsInordertomotivateourfurtherdiscussionofchaoticeigenstates,letus rstrecallafewfactsabouttheoppositesystems,namelycompletelyintegrableHamiltonian ows.Forsuchsystems,theenergyshellEEisfoliatedbyd-dimensionalinvariantLagrangiantori.EachsuchtorusischaracterizedbythevaluesofdindependentinvariantactionsI1;:::;Id,soletuscallsuchatorusT~I.TheWKBtheoryallowsonetoexplicitlyconstruct,inthesemiclassicallimit,precisequasimodesof^H~associatedwithsomeofthesetori5,thatisnormalizedstates ~I= ~;~Isatisfying^H~ ~I=E~I ~I+O(~1);(19)withenergiesE~IE.SuchaLagrangian(orWKB)state ~Itakesthefollowingform(awayfromcaustics): ~I(x)=LX`=1A`(x;~)exp(iS`(x)=~):(20)HerethefunctionsS`(x)are(local)generatingfunctions6forT~I,andeachA`(x;~)=A0`(x)+~A1`(x)+isasmoothamplitude.Fromthisveryexplicitexpression,onecaneasilycheckthatthestate ~IismicrolocalizedonT~I.Ontheotherhand,ourknowledgeof ~ismuchmoreprecisethanthelatterfact.OnecaneasilyconstructotherstatesmicrolocalizedonT~I,whichareverydi erentfromtheLagrangianstates ~I.Forinstance,foranypointx0=(x0;p0)2T~ItheGaussianwavepacket(orcoherentstate)'x0(x)=(~)�1=4e�jx�x0j2=2~eip0x=~(21)ismicrolocalizedonthesinglepointx0,andthereforealsoonT~I.Thisexamplejustre ectsthefactthatastatementaboutmicrolocalizationofasequenceofstatesprovidesmuchlessinformationonthanaformulalike(20). 4Thepre xmicromustn'tmisleadus:wearestilldealingwithmacroscopiclocalizationpropertiesof ~!5The\quantizable"toriT~IsatisfyBohr-SommerfeldconditionsIi=2~(ni+ i),withni2Zand i2[0;1] xedindices.6AbovesomeneighbourhoodU2Rd,thetorusT~IistheunionofLlagrangianleavesf(x;rS`(x));x2Ug,`=1;:::;L Vol.XIV,2010Anatomyofquantumchaoticeigenstates191quantizedergodicdi eomorphismsonthetorus[28]oronmoregeneralcompactphasespaces[99]ageneralframeworkofCdynamicalsystems[98]afamilyofquantizedergodicmapswithdiscontinuities[72]andthebaker'smap[39]certainquantumgraphs[17]Letusgivetheideasusedtoprovetheabovetheorem.Wewanttostudythestatisti-caldistributionofthematrixelementsWj(f)=h j;^f~j jiintherangefkjKg,withKlarge.The rststepistoestimatetheaverageofthisdistribution.ItisestimatedbythegeneralizedWeyllaw:XkjKj(f)Vol(M)d (2)dKdZEfdL;K!1;(22)wheredisthevolumeoftheunitballinRd[53].Inparticular,thisasymptoticsallowstocountthenumberofeigenvalueskjK:#fkjKgVol(M)d (2)dKd;K!1;(23)andshowsthattheaverageofthedistributionfj(f);kjKgconvergestothephasespaceaverageL(f)whenK!1.Now,wewanttoshowthatthedistributionisconcentratedarounditsaverage.ThiswillbedonebyestimatingitsvarianceVarK(f)def=1 #fkjKgXkjKjh j;(^f~j�L(f)) jij2;whichhasbeencalledthequantumvariance.Becausethe jareeigenstatesofU~,wemayreplace^f~jbyitsquantumtimeaverageuptosomelargetimeT,^fT;~j=1 2TZT�TU�t~j^f~jU�t~jdt;withoutmodifyingthematrixelements.Atthisstep,weusethesimpleinequalityjh j;A jj2h j;AA i;foranyboundedoperatorA;togetthefollowingupperboundforthevariance:VarK(f)1 #fkjKgXkjKh j;(^fT;~j�L(f))(^fT;~j�L(f)) ji:TheEgorovtheorem(4)showsthattheproductoperatorontherighthandsideisapproximatelyequaltothequantizationofthefunctionjfT�L(f)j2,wherefTistheclassicaltimeaverageoff.ApplyingthegeneralizedWeyllaw(22)tothisfunction,wegettheboundVarK(f)L(jfT�L(f)j2)+OT(K�1): Vol.XIV,2010Anatomyofquantumchaoticeigenstates193 cannotbeasemiclassicalmeasure.SuchanunlikelysubsequencewaslatercalledastrongscarbyRudnickandSarnak[84],inreferencetothescarsdiscoveredbyHelleronthestadiumbilliard(seex4.2).Inthesamepapertheauthorsformulatedastrongerconjecture:Conjecture1[Quantumuniqueergodicity]Let(M;g)beacompactriemannianmanifoldwithnegativesectionalcurvature.Thenallhigh-frequencyeigenstatesbe-comeequidistributedwithrespecttotheLiouvillemeasure.Thetermquantumuniqueergodicityreferstothenotionofuniqueergodicityinergodictheory:asystemisuniquelyergodicsystemifitadmitsuniqueinvariantprobabilitymeasure.Thegeodesic owsweareconsideringadmitmanyinvariantmeasures,buttheconjecturestatesthatthecorrespondingquantumsystemselectsonlyoneofthem.3.3.3ArithmeticquantumuniqueergodicityThisconjecturewasmotivatedbythefollowingresultprovedinthecitedpaper.Theauthorsspeci callyconsideredarithmeticsurfaces,obtainedbyquotientingthePoincarediskHbycertaincongruentco-compactgroups�.Asexplainedinx2.4.2,onsuchasurfaceitisnaturaltoconsiderHeckeeigenstates,whicharejointeigen-statesoftheLaplacianandthe(countablymany)Heckeoperators7.Itwasshownin[84]thatanysemiclassicalmeasurescassociatedwithHeckeeigenstatesdoesnotcontainanyperiodicorbitcomponent .Themethodsof[84]werere nedbyBourgainandLindenstrauss[27],whoshowedthatthemeasurescofan-thintubealonganygeodesicsegmentisboundedfromabovebyC2=9.ThisboundimpliesthattheKolmogorov-Sinaientropyofscisboundedfrombelowby2=98.Finally,usingadvancedergodictheorymethods,LindenstrausscompletedtheproofoftheQUEconjectureinthearithmeticcontext.Theorem2[ArithmeticQUE][69]LetM=�nHbeanarithmetic9surfaceofcon-stantnegativecurvature.Consideraneigenbasis( j)j2NofHeckeeigenstatesof�M.Then,theonlysemiclassicalmeasureassociatedwiththissequenceistheLiouvillemeasure.LindenstraussandBrooksrecentlyannouncedanimprovementofthistheorem:theresultholdstrue,assumingthe( j)arejointeigenstatesofMandofasingleHeckeoperatorTn0.Theirproofusesanewdelocalizationestimateforregulargraphs[30],whichreplacestheentropyboundsof[27].ThispositiveQUEresultwasprecededbyasimilarstatementforthehyperbolicsymplectomorphismsonT2introducedinx2.5.1.ThesequantummapsUN(S0)havethenongenericpropertytobeperiodic,soonehasanexplicitexpressionfortheireigenstates.Itwasshowsin[38]thatforacertainfamilyhyperbolicmatricesS0andcertainsequencesofprimevaluesofN,theeigenstatesofUN(S0)becomeequidis-tributedinthesemiclassicallimit,withanexplicitboundontheremainder.Some 7ThespectrumoftheLaplacianonsuchasurfaceisbelievedtobesimple;ifthisisthecase,thenaneigenstateofisautomaticallyaHeckeeigenstate.8ThenotionofKSentropywillbefurtherexplainedinx3.4.9Fortheprecisede nitionofthesesurfaces,see[69]. Vol.XIV,2010Anatomyofquantumchaoticeigenstates195Conjecture2[GeneralizedQUE]LettHbeanergodicHamiltonian owonsomeenergyshellEE.Then,alleigenstates ~;jof^H~ofenergiesE~;jEbecomeequidis-tributedwhen~!0.LetbeacanonicalergodicmaponT2.Then,theeigenstates N;jofUN()becomeequidistributedwhenN!1.AnintensivenumericalstudyforeigenstatesofaSinai-likebilliardwascarriedonbyBarnett[15].Itseemstocon rmQUEforthissystem.Inthenextsubsectionwewillexhibitparticularsystemsforwhichthisconjec-turefails.3.3.4CounterexamplestoQUE:half-scarredeigenstatesInthissectionwewillexhibitsequencesofeigenstatesconvergingtosemiclassicalmeasuresdi erentfromL,thusdisprovingtheaboveconjecture.LetuscontinueourdiscussionofsymplectomorphismsonT2.ForanyN1,thequantumsymplectomorphismUN(S0)areperiodic(uptoaglobalphase)ofperiodTN3N,sothatitseigenvaluesareessentiallyTN-rootsofunity.ForvaluesofNsuchthatTNN,thespectrumofUN(S0)isverydegenerate,inwhichcaseimposingtheeigenstatestobeofHecketypebecomesastrongrequirement.In[62]itisshownthat,providedtheperiodisnottoosmall(namely,TNN1=2�,whichisthecaseforalmostallvaluesofN),thenQUEholdsforanyeigenbasis.Ontheopposite,thereexist(sparse)valuesofN,forwhichtheperiodcanbeassmallasTNClogN,sothattheeigenspacesofhugedimensionsC�1N=logN.ThisfreedomallowedFaure,DeBievreandtheauthortoexplicitlyconstructeigen-stateswithdi erentlocalizationproperties[42,43].Theorem4TakeS02SL2(Z)a(quantizable)hyperbolicmatrix.Then,thereexistsanin nite(sparse)sequenceSNsuchthat,foranyperiodicorbit ofS0,onecanconstructasequenceofeigenstates( N)N2SofUN(S0)associatedwiththesemiclassicalmeasuresc=1 2 +1 2L:(24)Moregenerally,foranyS0-invariantmeasureinv,onecanconstructsequencesofeigenstatesassociatedwiththesemiclassicalmeasuresc=1 2inv+1 2L:Thisresultprovidedthe rstcounterexampletothegeneralizedQUEconjecture.Theeigenstatesassociatedwith1 2 +1 2Lcanbecalledhalf-localized.Thecoe-cient1=2infrontofthesingularcomponentof wasshowntobeoptimal[43],aphenomenonwhichwasthengeneralizedusingentropymethods(seex3.4).Letusbrie yexplaintheconstructionofeigenstateshalf-localizedona xedpointx0.TheyareobtainedbyprojectingonanyeigenspacetheGaussianwavepacket'x0(see(21)).EachspectralprojectioncanbeexpressedasalinearcombinationoftheevolvedstatesUN(S0)n'x0,forn2[�TN=2;TN=2�1].Now,weusethefactthat,forNinanin nitesubsequenceSN,theperiodTNoftheoperatorUN(S0)isclosetotwicetheEhrenfesttimeTE=log~�1 ;(25) Vol.XIV,2010Anatomyofquantumchaoticeigenstates197indeedfailtoequidistribute.Tostatehisresult,letusparametrizetheshapeofastadiumbilliardisbytheratio betweenthelengthandtheheightoftherectangle.Theorem5[49]Forany�0,thereexistsasubsetB[1;2]ofmeasure1�4andanumberm()�0suchthat,forany 2B,the -stadiumadmitsasemiclassicalmeasurewithaweightm()onthebouncing-ballorbits.Althoughthetheoremonlyguaranteesthatafractionm()ofthesemiclassicalmeasureislocalizedalongthebouncing-ballorbits,numericalstudiessuggestthatthemodesareasymptoticallyfullyconcentratedontheseorbits.Besides,suchmodesareexpectedtoexistforallratios �0. Figure10:Twoeigenstatesofthestadiumbilliard( =2).Left(k=39:045):themodehasascaralongtheunstablehorizontalorbit.Right(k=39:292):themodeislocalizedinthebouncing-ballregion.3.4EntropyofthesemiclassicalmeasuresToendthissectiononthemacroscopicproperties,letusmentionarecentapproachtocontrainthepossiblesemiclassicalmeasuresoccurringinachaoticsystem.Thisapproach,initiatedbyAnantharaman[1],consistsinprovingnontriviallowerboundsfortheKolmogorov-Sinaientropyofthesemiclassicalmeasures.TheKS(ormetric)entropyisacommontoolinclassicaldynamicalsystems, owsormaps[57].Tobebrief,theentropyHKS()ofaninvariantprobabilitymeasureisanonnegativenumber,whichquanti estheinformation-theoreticcomplexityof-typicaltrajec-tories.Itdoesnotdirectlymeasurethelocalizationof,butgivessomeinformationaboutit.Herearesomerelevantproperties:thedeltameasure onaperiodicorbithasentropyzero.foranAnosovsystem( owordi eomorphism),theentropyisconnectedtotheunstableJacobianJu(x)(seeFig.3)throughtheRuelle-Pesinformula:invariant,HKS()ZlogJu()d;withequalityi istheLiouvillemeasure.theentropyisananefunctiononthesetofprobabilitymeasures:HKS( 1+(1� )2)= HKS(1)+(1� )HKS(2). 198S.NonnenmacherSeminairePoincareInparticular,theinvariantmeasure  +(1� )Lofahyperbolicsymplectomor-phismShasentropy(1� ),whereisthepositiveLyapunovexponent.Anantharamanconsideredthecaseofgeodesic owsonmanifoldsMofnegativecurvature,seex2.4.2.SheprovedthefollowingconstraintsonsemiclassicalmeasuresofM:Theorem6[1]Let(M;g)beasmoothcompactriemannianmanifoldofnegativesectionalcurvature.Thenthereexistsc�0suchthatanysemiclassicalmeasurescof(M;g)satis esHKS(sc)c.Inparticular,thisresultforbidssemiclassicalmeasuresfrombeingsupportedonunionsofperiodicgeodesics.Amorequantitativelowerboundwasobtainedin[2,4],relatedwiththeinstabilityofthe ow.Theorem7[4]Underthesameassumptionsasabove,anysemiclassicalmeasuremustsatisfyHKS(sc)ZlogJudsc�(d�1)max 2;(26)whered=dimMandmaxisthemaximalexpansionrateofthe ow.ThislowerboundwasgeneralizedtothecaseoftheWalsh-quantizedbaker'smap[2],andthehyperbolicsymplectomorphismsonT2[29,78],whereittakestheformHKS(sc) 2.Forthesemaps,theboundissaturatedbythehalf-localizedsemi-classicalmeasures1 2( +L).Thelowerbound(26)iscertainlynotoptimalincasesofvariablecurvature.Indeed,therighthandsidemaybecomenegativewhenthecurvaturevariestoomuch.AmorenaturallowerboundhasbeenobtainedbyRiviereintwodimensions:Theorem8[82,83]Let(M;g)beacompactriemanniansurfaceofnonpositivesec-tionalcurvature.Thenanysemiclassicalmeasuresatis esHKS(sc)1 2Z+dsc;(27)where+isthepositiveLyapunovexponent.ThesamelowerboundwasobtainedbyGutkinforafamilyofnonsymmetricbaker'smap[46];healsoshowedthattheboundisoptimalforthatsystem.Thelowerbound(27)isalsoexpectedtoholdforergodicbilliards,likethestadium;inparticular,itwouldnotcontradicttheexistenceofsemiclassicalmeasuressupportedonthebouncingballorbits.Inhigherdimension,oneexpectsthelowerboundHKS(sc)1 2RlogJudsctoholdforAnosovsystems.Kelmer'scounterexamples[60]showthatthisboundmaybesaturatedforcertainAnosovdi eomorphismsonT2d.Toclosethissection,wenoticethattheQUEconjecture(whichremainsopen)amountstoimprovingtheentropiclowerbound(26)toHKS(sc)RlogJudsc.4StatisticaldescriptionThemacroscopicdistributionpropertiesdescribedintheprevioussectiongiveapoordescriptionoftheeigenstates,comparedwithourknowledgeofeigenmodesof 200S.NonnenmacherSeminairePoincareforthisfunctionintherange0jrj1:C ;R(x;r)J0(kjrj) Vol( ):(28)Suchahomogeneousandisotropicexpressioncouldbeexpectedfromourapprox-imation.ReplacingtheWignerdistributionbyLsuggeststhat,neareachpointx2 ,theeigenstate isanequalmixtureofparticlesofenergyk2travellinginallpossibledirections.4.1.2ArandomstateAnsatzYet,theapproximationLfortheWignerdistributionsW isNOTtheWignerdistributionofanyquantumstate10.Thenextquestionisthus[95]:canoneexhibitafamilyofquantumstateswhoseWignermeasuresresembleL?Orequivalently,whosemicroscopiccorrelationsbehavelike(28)?BerryproposedarandomsuperpositionofplanewavesAnsatztoaccountfortheseisotropiccorrelations.OneformofthisAnsatzreads rand;k(x)=2 NVol( )1=2NXj=1ajexp(k^njx);(29)where(^nj)j=1;:::;Nareunitvectorsdistributedontheunitcircle,andthecoecients(aj)j=1;:::;Nareindependentidenticallydistributed(i.i.d.)complexnormalGaussianrandomvariables.Inordertospanallpossiblevelocitydirections(withintheuncer-taintyprinciple),oneshouldincludeNkdirections^njThenormalizationensuresthatk rand;kkL2( )1withhighprobabilitywhenk1.Alternatively,onecanreplacetheplanewavesin(29)bycircular-symmetricwaves,namelyBesselfunctions.Incircularcoordinates,therandomstatereads rand;k(r;)=(Vol( ))�1=2MXm=�MbmJjmj(kr)eim;(30)wherethecoecientsi.i.d.complexGaussiansatisfyingthesymmetrybm=b�m,andMk.Bothrandomensemblesasymptoticallyproducethesamestatisticalresults.Therandomstate rand;ksatis estheequation(+k2) =0intheinte-riorof .Furthermore, rand;ksatis esa\localquantumergodicity"property:foranyobservablef(x;p)supportedintheinteriorofT ,thematrixelementsh rand;k;^fk�1 rand;kiL(f)withhighprobability(moreisknownabouttheseelements,seex4.1.3).Thestrongerclaimisthat,intheinteriorof ,thelocalstatisticalpropertiesof rand;k,includingitsmicroscopicones,shouldbesimilarwiththoseoftheeigenstates jwithwavevectorskjk.Thecorrelationfunctionofeigenstatesofchaoticplanarbilliardshasbeennu-mericallystudied,andcomparedwiththisrandommodels,seee.g.[71,11].The 10CharacterizingthefunctiononTRdwhichareWignerfunctionsofindividualquantumstatesisanontrivialquestion. 202S.NonnenmacherSeminairePoincarevariance,aswellastheGaussiandistributionforthematrixelementsathighfre-quency.Still,theconvergencetothislawcanbesloweddownforbilliardsadmittingbouncing-balleigenmodes,likethestadiumbilliard[10].Foragenericchaoticsystem,rigoroussemiclassicalmethodscouldonlyprovelogarithmicupperboundsforthequantumvariance[88],Var~(f)C=jlog~j.Schu-bertshowedthatthisslowdecaycanbesharpforcertaineigenbasesofthequantumcatmap,inthecaseoflargespectraldegeneracies[89](aswehaveseeninx3.3.4,suchdegeneraciesarealsoresponsiblefortheexistenceexceptionallylocalizedeigen-states,soalargevarianceisnotsurprising).Theonlysystemsforwhichanalgebraicdecayisknownareofarithmeticnature.LuoandSarnak[70]provedthat,inthecaseofonthemodulardomainM=SL2(Z)nH(anoncompact, nitevolumearithmeticsurface),thequantumvariancecorrespondingtohigh-frequencyHeckeeigenfunctions11isoftheformVarK(f)=B(f) K:thepolynomialdecayisthesameasin(32),butthecoecientB(f)isequaltheclassicalvariance,\decorated"byanextrafactorofarithmeticnature.Morepreciseresultswereobtainedforquantumsymplectomorphismsonthe2-torus.KurlbergandRudnick[64]studiedthedistributionofmatrixelementsfp Nh N;j;^fN N;ji;j=1;:::;Ng,wherethe( N;j)formaHeckeeigenbasisofUN(S)(seex3.3.3).Theycomputedthevariance,whichisasymptoticallyoftheformB(f) N,withB(f)a\decorated"classicalvariance.Theyalsocomputedthefourthmo-mentofthedistribution,whichsuggeststhatthelatterisnotGaussian,butgivenbyacombinationofseveralsemi-circlelawson[�2;2](orSato-Tatedistributions).Thesamesemi-circlelawhadbeenshownin[63]tocorrespondtotheasymptoticvaluedistributionoftheHeckeeigenstates,atleastforNalongasubsequenceof\splitprimes".4.1.4MaximaofeigenfunctionsAnotherinterestingquantityisthestatisticsofthemaximalvaluesofeigenfunctions,thatistheirL1norms,ormoregenerallytheirLpnormsforp2(2;1](wealwaysassumetheeigenfunctionstobeL2-normalized).Themaximabelongtothefartailofthevaluedistribution,sotheirbehaviourisaprioriuncorrelatedwiththeGaussiannatureofthelatter.Therandomwavemodelgivesthefollowingestimate[8]:forC�0largeenough,k rand;kk1 k rand;kk2Cp logkwithhighprobabilitywhenk!1(33)NumericaltestsonsomeEuclideanchaoticbilliardsandasurfaceofnegativecur-vatureshowthatthisorderofmagnitudeiscorrectforchaoticeigenstates[8].Smallvariationswereobservedbetweenarithmetic/non-arithmeticsurfacesofconstantnegativecurvature,thesup-normsappearingslightlylargerinthearithmeticcase,butstillcompatiblewith(33).Fortheplanarbilliards,thelargestmaximaoccuredforstatesscarredalongaperiodicorbit(seex4.2).Mathematicalresultsconcerningthemaximaofeigenstatesofgenericmanifoldsofnegativecurvaturearescarce.Ageneralupperboundk jk1Ck(d�1)=2j(34) 11Theproofisfullywrittenfortheholomorphiccuspforms,buttheauthorsclaimthatitadaptseasilytotheHeckeeigenfunctions. 204S.NonnenmacherSeminairePoincare Figure11:L1(left)andL2(right)normsoftheHusimidensitiesforeigenstatesofthequantumsymplectomorphismUN(SDEGI)(crosses;thedotsindicatethestatesmaximallyscarredon(0;0)).Thedataarecomparedwiththevaluesformaximallylocalizedstates,lagrangianstates,randomstatesandthemaximallydelocalizedstate.(reprintedfrom[79]).In[63]theHeckeeigenstatesofUN(S),expressedasN-vectorsinthepositionbasis(e`),wereshowntosatisfynontrivialL1bounds12:k N;jk1CN3=8+:Besides,forNalongasubsequenceof\splitprimes",thedescriptionoftheHeckeeigenstatesismuchmoreprecise.Theirpositionvectorsareuniformlybounded,k N;jk12,andthevaluedistributionofindividualeigenstatesfj N;j(`=N);`=0;:::;N�1jgisasymptoticallygivenbythesemicirclelawon[0;2],showingthattheseeigenstatesareverydi erentfromGaussianrandomstates.Inspiteofthisfact,thevaluedistributionoftheirHusimifunctionx!hj'x; N;jij2,whichcombinesp Npositioncoecients,seemstobeexponential.4.2ScarsofperiodicorbitsAroundthetimethequantumergodicitytheoremwasproved,aninterestingphe-nomenonwasobservedbyHellerinnumericalstudiesonthestadiumbilliard[51].Hellernoticedthatforcertaineigenfunctions,thespatialdensityj j(x)j2isabnor-mallyenhancedalongoneorseveralunstableperiodicgeodesics.Hecalledsuchanenhancementascaroftheperiodicorbitontheeigenstate j.SeeFig.10(left)andFig.12forscarsatlowandrelativelyhighfrequencies.ThisphenomenonwasobservedtopersistathigherandhigherfrequenciesforvariousEuclideanbilliards[94,8],butwasnotdetectedonmanifoldsofnegative 12Inthechosennormalization,thetrivialboundreadsk k1ke`k1=N1=2. Vol.XIV,2010Anatomyofquantumchaoticeigenstates205curvature[6].Couldscarredstatesrepresentcounterexamplestoquantumergodic- Figure12:Ahigh-energyeigenmodeofthestadiumbilliard(k130).Doyouseeanyscar?ity?Moreprecisenumerics[15]showedthatthattheprobabilityweightsoftheseenhancementsneartheperiodicorbitsdecayinthehigh-frequencylimit,becausetheareascoveredbytheseenhancementsdecayfasterthantheirintensities.Asaresult,asequenceofscarredstatesmaystillbecomeequidistributedintheclassicallimit[55,15].Inordertoquantitativelycharacterizethescarringphenomenon,itturnedmoreconvenienttoswitchtophasespacerepresentations,inparticulartheHusimidensityoftheboundaryfunction (q)=@ (q),whichlivesonthephasespaceT@ ofthebilliardmap[37,93].Periodicorbitsarethenrepresentedbydiscretepoints.ScarswerethendetectedasenhancementsoftheHusimidensityH j(x)onperiodicphasespacepointsx.Similarstudieswereperformedinthecaseofquantumchaoticmapsonthetorus,likethebaker'smap[86]orhyperbolicsymplectomorphisms[79].ThescarredstateshowedinFig.8(left)hasthelargestvalueoftheHusimidensityamongalleigenstatesofUN(SDEGI),butitisneverthelessaHeckeeigenstate,sothatitsHusimimeasureshouldbe(macroscopically)closetoL.Thisexampleunambigu-ouslyshowsthatthescarringphenomenonisamicroscopicphenomenon,compatiblewithquantumuniqueergodicity.4.2.1AstatisticaltheoryofscarsHeller rsttriedtoexplainthescarringphenomenonusingthesmoothedlocaldensityofstatesS;x0(E)=Xj(E�Ej)jh'x0; jij2=h'x0;(E�^H~)'x0i;(36)where'x0isaGaussianwavepacket(21)sittingonapointoftheperiodicorbit;theenergycuto isconstrainedbythefactthatthisexpressionisestimatedthrough 206S.NonnenmacherSeminairePoincareitsFouriertransform,thatisthetimeautocorrelationfunctiont7!h'x0;Ut~'x0i~(t);(37)where~isthe~-Fouriertransformof.Becausewecancontroltheevolutionof'x0onlyuptotheEhrenfesttime(25),wemusttake~supportedontheinterval[�TE=2;TE=2],sothathaswidth&~=jlog~j13.SinceUt~'x0comesbacktothepointx0ateachperiodT,S;x(E)haspeaksattheBohr-Sommerfeldenergiesoftheorbit,separatedby2~=Tfromoneanother;however,duetothehyperbolicspreadingofthewavepacket,thesepeakshavewidths~=T,whereistheLyapunovexponentoftheorbit.Hence,thepeakscanonlybesigni cantforsmallenough,thatisweaklyunstableorbits.Evenifissmall,thewidth~=Tbecomesmuchlargerthanthemeanlevelspacing1=C~2inthesemiclassicallimit,sothatS;x(E)isamixtureofmanyeigenstates.Inparticular,thismechanismcannotpredictwhichindividualeigenstatewillshowanenhancementatx0,norcanitpredictthevalueoftheenhancements.FollowingHeller'swork,Bogomolny[23]andBerry[19]showedthatcertainlinearcombinationsofeigenstatesshowsome\extradensity"inthespatialdensity(resp.\oscillatorycorrections"intheWignerdensity)aroundacertainnumberofclosedgeodesics.Inthesemiclassicallimit,thesecombinationsalsoinvolvemanyeigenstatesinsomeenergywindow.Adecadelater,HellerandKaplandevelopeda\nonlinear"theoryofscarring,whichproposesastatisticalde nitionofthescarringphenomenon[55].Theyno-ticedthat,givenanenergyintervalIofwidth~2jIj~,thedistributionoftheoverlapsfjh'x; jij2;Ejj2Igdependsonthephasepointx:ifxliesona(mildlyunstable)periodicorbit,thedistributionisspreadbetweensomelargeval-ues(scarredstates)andsomelowvalues(antiscarredstates).Ontheopposite,ifxisa\generic"point,thedistributionoftheoverlapsisnarrower.Thisremarkwasmadequantitativebyde ningastochasticmodelfortheun-smoothedlocaldensityofstatesSx(E)(thatis,takingin(36)tobeadeltafunction),asane ectivewaytotakeintoaccountthe(uncontrolled)longtimere-currencesintheautocorrelationfunction(37).Accordingtothismodel,theoverlaps'x; jiinanenergywindowI3EshouldbehavelikerandomGaussianvariables,ofvariancegivenbythesmoothedlocaldensityS;x(E).Hence,ifxliesonashortperiodicorbit,thestatesinenergywindowsclosetotheBohr-Sommerfeldenergies(whereS;x(E)ismaximal)statisticallyhavelargeroverlapswith'x,whilestateswithenergiesEjclosetotheanti-Bohr-Sommerfeldenergiesstatisticallyhavesmalleroverlaps.TheconcatenationoftheseGaussianrandomvariableswithsmoothly-varyingvariancesproducesanon-Gaussiandistribution,withataillargerthantheonepredictedbyBerry'srandommodel.Ontheopposite,ifxisa\generic"point,thevarianceshouldnotdependontheenergyEjandthefulldistributionofthe'x; jiremainsGaussian.Althoughnotrigorouslyjusti ed,thisstatisticalde nitionofscarringgivesquantitativepredictions,andcanbeviewedasaninterestingdynamicalcorrectionoftherandomstatemodel(29). 13Westickhereto2-dimensionalbilliards,ormapsonT2,sothattheunstablesubspacesare1-dimensional. 208S.NonnenmacherSeminairePoincare Figure13:Left:nodaldomainsofaneigenfunctionofthequarter-stadiumwithk100:5(doyouseetheboundaryofthestadium?).Right:nodaldomainsofarandomstate(30)withk=100(reprintedfrom[26]).modelstartsfromaseparableeigenfunction,oftheformcos(kx=p 2)cos(ky=p 2),forwhichnodallinesformagrid;theyperturbthisfunctionneareachintersection,sothateachcrossingbecomesanavoidedcrossing(seeFig.14).Althoughthelengthofthenodalsetisalmostunchanged,thestructureofthenodaldomainsisdrasticallymodi edbythisperturbation.Assumingtheselocalperturbationsareuncorrelated,theyobtainarepresentationofthenodaldomainsasclustersofacriticalbondpercolationmodel,awell-knownmodelin2-dimensionalstatisticalmechanics.The(somewhatamazing)claimmadein[25]isthatsuchaperturbationoftheseparablewavefunctionhasthesamenodalcountstatisticsasarandomfunction,eventhoughthelatterisverydi erentfromtheformerinmayways.Thisfactcanbeattributedtotheinstabilityofthenodaldomainsoftheseparablewavefunction(duetothelargenumberofcrossings),asopposedtotherelativestabilityofthedomainsofrandomstates(withgenericallynocrossing).Theuncorrelatedlocalperturbationsinstantaneouslytransformmicroscopicsquaredomainsintomesoscopic(sometimesmacroscopic)\fractal"domains.Thehigh-frequencylimit(k!1)fortherandomstate(29,30)correspondstothethermodynamicslimitofthepercolationmodel,alimitinwhichthestatisticalpropertiesofpercolationclustershavebeenmuchinvestigated.Thenodalcountratio(39)countsthenumberofclustersonalatticeofNtot=2 N(k)sites.Thedistributionofthenumberofdomains/clusters(k)wascomputedinthislimit[25]:itisaGaussianwithpropertiesh(k)i N(k)!0:0624;2((k)) N(k)!0:0502:(39)NazarovandSodin[76]haveconsideredrandomsphericalharmonicsonthe2-sphere Vol.XIV,2010Anatomyofquantumchaoticeigenstates209 Figure14:Constructionoftherandom-bondpercolationmodel.Left:startingfromasquaregridwhere (x)alternativelytakespositive(+)andnegative(�)values,asmallperturbation (x)neareachcrossingcreatesanavoidedcrossing.Right:theresultingpositiveandnegativenodaldo-mainscanbedescribedbysettingupbonds(thick/dashedlines)betweenadjacentsites(reprintedfrom[25]).(namely,Gaussianrandomstateswithineach2n+1-dimensionaleigenspace,n0),andprovedthatthenumberofnodaldomainsontheeigenspaceassociatedwiththeeigenvaluen(n+1)statisticallybehaveslike(a+o(1))n2,forsomeconstanta�0.Althoughtheycomputeneithertheconstanta,northevarianceofthedistribution,thisresultindicatesthatthepercolationmodelmayindeedcorrectlypredictthenodalcountstatisticsforGaussianrandomstates.Remark2Wenowhavetwolevelsofmodelization.First,thechaoticeigenstatesarestatisticallymodelledbytherandomstates(29,30).Second,thenodalstructureofrandomstatesismodelledbycriticalpercolation.Thesetwoconjecturesappealtodi erentmethods:thesecondoneisapurelystatisticalproblem,whilethe rstonebelongstothe\chaotic=random"meta-conjecture.5.2OthernodalobservablesThepercolationmodelalsopredictsthestatisticaldistributionoftheareasofnodaldomains:thisdistributionhastheformP(s)s�187=91,wheresisthearea.Ofcourse,thisscalingcanonlyholdinthemesoscopicrangek�2s1,sinceanydomainhasanareaC=k2.Thenumber~jofnodallinesof jtouchingtheboundary@ isalsoaninterstingnodalobservable.Therandomstatemodel(30)wasusedin[22]topredictthefollowingdistribution:h~(k)i kk!1���!Vol(@ ) 2;2(~(k)) kk!1���!0:0769Vol(@ ):ThesameexpectationvaluewasrigorouslyobtainedbyTothandWigman[92],whenconsideringadi erentrandommodel,namelyrandomsuperpositionsofeigenstates joftheLaplacianinfrequencyintervalskj2[K;K+1]: rand;K=Xkj2[K;K+1]aj j;(40) 210S.NonnenmacherSeminairePoincarewiththeajarei.i.d.normalGaussians.5.3MacroscopicdistributionofthenodalsetThevolumeofthenodalsetofeigenfunctionsisanotherinterestingquantity.Apriori,thisvolumeshouldbelesssensitivetoperturbationsthanthenodalcountj.Severalrigorousresultshavebeenobtainedonthismatter.DonnellyandFe erman[40]showedthat,foranyd-dimensionalcompactreal-analyticmanifold,the(d�1)-dimensionalvolumeofthenodalsetoftheLaplacianeigenstatessatis estheboundsC�1kjVold�1N( j)Ckj;forsomeC�0dependingonthemanifold.Thestatisticsofthisvolumehasbeeninvestigatedforvariousensemblesofrandomstates[16,20,85].TheaveragelengthgrowslikecMkwithaconstantcM�0dependingonthemanifold;estimatesforthevariancearemorediculttoobtain.Berry[20]arguedthatforthe2-dimensionalrandommodel(29),thevarianceshouldbeoforderlog(k),showinganunusuallystrongconcentrationpropertyforthisrandomvariable.SuchalogarithmicvariancewasrecentlyprovedbyWigmaninthecaseofrandomsphericalharmonicsofthe2-sphere[96].Countingorvolumeestimatesdonotprovideanyinformationonthespatiallocalizationofthenodalset.Atthemicroscopiclevel,Bruning[31]showedthatforanycompactriemannianmanifold,thenodalsetN( j)is\dense"atthescaleofthewavelength:forsomeconstantC�0,anyballB(x;C=kj)intersectsN( j).Onecanalsoconsiderthe\macroscopicdistribution"ofthezeroset,byinte-gratingweightfunctionsoverthe(d�1)-dimensionalriemannianmeasureonN( j):8f2C0(M);~Z j(f)def=ZN( j)f(x)dVold�1(x):(41)Similarlywiththecaseofthedensityj j(x)j2oritsphasespacecousins,thespatialdistributionofthenodalsetcanthenbedescribedbytheweak-limitsoftherenormalizedmeasuresZ j=~Z j ~Z j(M)inthehigh-frequencylimit.Inthecaseofchaoticeigenstates,thefollowingconjecture16seemsareasonable\dual"totheQUEconjecture:Conjecture3Let(M;g)beacompactsmoothriemannianmanifold,withanergodicgeodesic ow.The,foranyorthonormalbasis( j)j1,theprobabilitymeasuresZ jweak-convergetotheLebesguemeasureonM,inthelimitj!1.Thisconjectureiscompletelyopen.Oneslightweakeningwouldbetorequestthattheconvergenceholdsonadensity1subsequence,asinThm.1.Indeed,asimilarpropertycanbeprovedinthecomplexanalyticsetting(seex5.5).ForMarealanalyticmanifold,eigenfunctionscanbeanalyticallycontinuedinsomecomplexneighbourhoodofM,intoholomorphicfunctions Cj.For( j)j2Sasequenceofergodiceigenfunctions,Zelditchhasobtainedtheasymptoticdistributionofthe(complex)nodalsetof Cj[100];however,hisresultsaysnothingabouttherealzeros(thatis,N( Cj)\M). 16probably rstmentionedbyZelditch 212S.NonnenmacherSeminairePoincare Figure15:Stellarrepresentationfor3eigenstatesofthequantumcatmapUN(SDEGI),theHusimidensitiesofwhichwereshowninFig.8,top,inadi erentorder.Canyouguessthecorrespondence?pointsinC,whichwewilldenote17byZ .Moreinterestingly,throughHadamard'sfactorizationonecanessentiallyrecovertheBargmannfunctionB fromitsnodalset,andthereforethequantumstate .Assuming062Z ,wehaveB (z)=e z2+ z+ Y06=zi2Z (1�z=zi)ez zi+1 2z2 z2i;leavingonly3undeterminedparameters.LeboeufandVoros[67]calledthesetZ thestellarrepresentationof ,andproposedtocharacterizethechaoticeigenstatesusingthisrepresentation.Thisideaisespeciallyappealinginthecaseofacompactphasespacelikethe2-torus:inthatcasetheBargmannfunctionB ofastate N2HNisanentirefunctiononCsatisfyingquasiperiodicityconditions,sothatitsnodalsetisZ2-periodic,andcontainsexactlyNzerosineachfundamentalcell.Onecanthenreconstructthestate NfromthissetofNpointsonT2(whichwedenotebyZT2 N):B N(z)=e Yzi2ZT2 N(z�zi);where(z)isa xedJacobithetafunctionvanishingonZ+iZ.Thisstellarrepre-sentationisexact,minimal(Ncomplexpointsrepresent 2HNCN)andlivesinphasespace.Theconjugationofthesethreepropertiesmakesitinterestingfromasemiclassicalpointofview.In[67]theauthorsnoticedastarkdi erencebetweenthenodalpatternsofintegrablevs.chaoticeigenstates.Intheintegrablecase,zerosareregularlyalignedalongcertaincurves,whichwereidenti edasanti-StokeslinesinacomplexWKBformalism.Namely,theBargmannfunctioncanbeapproximatedbyaWKBAnsatzsimilarwith(20)withphasefunctionsSj(z),andanti-Stokeslinesarede nedbyequations=(Sj(z)�Sk(z))=0inregionswhereeiSj(z)=~andeiSk(z)=~dominatetheotherterms.Thesecurvesofzerosaresittingatthe\antipodes"ofthelagrangiantoruswheretheHusimidensityisconcentrated(seeFig.7(center)). 17Noconfusionwillappearbetweenthissetandtherealnodalsetsoftheprevioussection. Vol.XIV,2010Anatomyofquantumchaoticeigenstates213Ontheopposite,thezerosofchaoticeigenstatesappearmoreorlessequidis-tributedacrossthewholetorus(seeFig.15),liketheHusimidensityitself.Thisfactwascheckedonothersystems,e.g.planarbilliards,forwhichthestellarrep-resentationsoftheboundaryfunctions@ j(x)wereinvestigatedin[93],leadingtosimilarconclusions.Thisobservationwasfollowedbyarigorousstatement,whichweexpressbyde ning(usingthesamenotationasintheprevioussection)the\stellarmeasure"ofastate N2HN.Z Ndef=N�1Xzi2ZT2 Nzi:Theorem9[79]Assumethatasequenceofnormalizedstates( N2HN)N1be-comesequidistributedonT2inthelimitN!1(thatis,theirHusimimeasuresH Nweak-convergetotheLiouvillemeasureL).Then,thecorrespondingstellarmeasuresZ Nalsoweak-convergetoL.Usingthequantumergodicitytheorem(orquantumuniqueergodicitywhenavail-able),onededucesthat(almost)allsequencesofchaoticeigenstateshaveasymptot-icallyequidistributedHusiminodalsets.Thisresultwasprovedindependently(andingreatergenerality)byShi manandZelditch[90].Thestrategyisto rstshowthattheelectrostaticpotentialu N(x)=N�1logH N(x)=2N�1logjB N(z)j�jzj2decays(inL1)inthesemiclassicallimit,andthenusethefactthatZ N=4u N.Thisuseofpotentialtheory(speci ctotheholomorphicsetting)explainswhysuchacorrespondingstatementhasnotbeenprovedyetforthenodalsetofrealeigen-functions(seethediscussionattheendofx5.3).Tomyknowledge,thisresultistheonlyrigorousoneconcerningthestellarrepresentationofchaoticeigenstates.Inparallel,manystudieshavebeendevotedtothestatisticalpropertiesofstellarrepresentationofrandomstates(35),whichcanthenbecomparedwiththoseofchaoticeigenstates.Zerosofrandomholomorphicfunctions(e.g.polynomials)havealonghistoryinprobabilitytheory,seee.g.therecentreview[77],whichmentionstheworksofKac,Littlewood,O ord,Rice.Thetopichasbeenrevivedintheyears1990throughquestionsappearinginquantumchaos[66,24,47].ForaGaussianensemblelike(35),onecanexplicitlycomputethen-pointcor-relationfunctionsofthezeros:besidesbeingequidistributed,thezerosstatisticallyrepeleachotherquadraticallyonthemicroscopicscaleN�1=2(thetypicaldistancebetweennearbyzeros),butareuncorrelatedatlargerdistances.Suchalocalrepul-sion(whichimposesacertainrigidityofrandomnodalsets)holdsingreatgenerality,showingaformofuniversalityatthemicroscopicscale[21,77].Thestudyof[79]suggestedthatthelocalizationpropertiesoftheHusimimea-sure(e.g.ascaronaperiodicorbit)couldnotbedirectlyvisualizedinthedistribu-tionofthefewzerosnearthescarringorbit,butratherinthecollectivedistributionofallzeros.WethusstudiedindetailtheFouriercoecientsofthestellarmeasures,Z (e2ikx);06=k2Z2:Inthecaseoftherandommodel(35),thevarianceoftheFouriercoecientscouldbeexplicitlycomputed:for xedk6=0andN1,thevarianceis2(3)jkj4=N3, Vol.XIV,2010Anatomyofquantumchaoticeigenstates215[9]A.Backer,R.SchubertandP.Stifter,Onthenumberofbouncingballmodesinbilliards,J.Phys.A30(1997),6783{6795.[10]A.Backer,R.SchubertandP.Stifter,RateofquantumergodicityinEuclideanbilliards,Phys.Rev.E57(1998)5425{5447.Erratum:Phys.Rev.E58(1998),5192.[11]A.BackerandR.Schubert,Autocorrelationfunctionforeigenstatesinchaoticandmixedsystems,J.Phys.A35(2002),539{564.[12]N.L.BalaszandA.Voros,Chaosonthepseudosphere,Phys.Rep.143(1986),109{240.[13]N.L.BalaszandA.Voros,Thequantizedbaker'stransformation,Ann.Phys.(NY)190(1989),1{31.[14]P.BalintandI.Melbourne,Decayofcorrelationsandinvarianceprinciplesfordispersingbilliardswithcusps,andrelatedplanarbilliard ows,J.Stat.Phys.133(2008),435{447.[15]A.H.Barnett,AsymptoticrateofquantumergodicityinchaoticEuclideanbil-liards,Comm.PureAppl.Math.59(2006),1457{1488.[16]P.Berard,Volumedesensemblesnodauxdesfonctionspropresdulaplacien,Bony-Sjoestrand-Meyerseminar,1984{1985,Exp.No.14,EcolePolytech.,Palaiseau,1985.[17]G.Berkolaiko,J.P.KeatingandU.Smilansky,Quantumergodicityforgraphsrelatedtointervalmaps,Commun.Math.Phys.273(2007),137{159.[18]M.V.Berry,Regularandirregularsemiclassicalwavefunctions,J.Phys.A,10(1977),2083{91.[19]M.V.Berry,QuantumScarsofClassicalClosedOrbitsinPhaseSpace,Proc.R.Soc.Lond.A423(1989),219{231.[20]M.V.Berry,Statisticsofnodallinesandpointsinchaoticquantumbilliards:perimetercorrections, uctuations,curvature,J.Phys.A35(2002),3025{3038.[21]P.Bleher,B.Shi manandS.Zelditch,Universalityandscalingofcorrelationsbetweenzerosoncomplexmanifolds,Invent.Math.142(2000),351{395.[22]G.Blum,S.GnutzmannandU.Smilansky,NodalDomainsStatistics:acri-teriumforquantumchaos,Phys.Rev.Lett.88(2002),114101.[23]E.B.Bogomolny,Smoothedwavefunctionsofchaoticquantumsystems,Phys-icaD31(1988),169{189.[24]E.Bogomolny,O.BohigasandP.Leboeuf,Quantumchaoticdynamicsandrandompolynomials,J.Stat.Phys.85(1996),639{679.[25]E.BogomolnyandC.Schmit,Percolationmodelfornodaldomainsofchaoticwavefunctions,Phys.Rev.Lett.88(2002),114102.[26]E.BogomolnyandC.Schmit,Randomwavefunctionsandpercolation,J.Phys.A40(2007),14033{14043. Vol.XIV,2010Anatomyofquantumchaoticeigenstates217[45]P.GerardetG.Leichtnam,ErgodicpropertiesofeigenfunctionsfortheDirich-letproblem,DukeMath.J.71(1993),559{607.[46]B.Gutkin,Entropicboundsonsemiclassicalmeasuresforquantizedone-dimensionalmaps,Commun.Math.Phys.294(2010),303{342.[47]J.H.Hannay,Chaoticanalyticzeropoints:exactstatisticsforthoseofaran-domspinstate,J.Phys.A29(1996),L101{L105.[48]J.H.HannayandM.V.Berry,Quantizationoflinearmaps{Fresneldi rac-tionbyaperiodicgrating,PhysicaD1(1980),267{290.[49]A.Hassell,Ergodicbilliardsthatarenotquantumuniqueergodic,withanappendixbyA.HassellandL.Hillairet.Ann.ofMath.171(2010),605{618.[50]B.Hel er,A.MartinezandD.Robert,Ergodiciteetlimitesemi-classique,Commun.Math.Phys.109(1987),313{326.[51]E.J.Heller,Bound-stateeigenfunctionsofclassicallychaotichamiltoniansys-tems:scarsofperiodicorbits,Phys.Rev.Lett.53(1984),1515{1518.[52]E.J.HellerandP.O'Connor,Quantumlocalizationforastronglyclassicallychaoticsystem,Phys.Rev.Lett.61(1988),2288{2291.[53]L.Hormander,Thespectralfunctionforanellipticoperator,ActaMath.127(1968),193{218[54]H.IwaniecandP.Sarnak,L1normsofeigenfunctionsofarithmeticsurfaces,Ann.ofMath.141(1995),301{320.[55]L.KaplanandE.J.Heller,Linearandnonlineartheoryofeigenfunctionscars,Ann.Phys.(NY)264(1998),171{206.[56]L.Kaplan,Scarsinquantumchaoticwavefunctions,Nonlinearity12(1999),R1{R40.[57]A.KatokandB.Hasselblatt,Introductiontothemoderntheoryofdynamicalsystems,CambridgeUniv.Press,Cambridge,1995.[58]J.P.Keating,F.Mezzadri,andA.G.Monastra,Nodaldomaindistributionsforquantummaps,J.Phys.A36(2003),L53{L59.[59]J.P.Keating,J.MarklofandI.G.Williams,Nodaldomainstatisticsforquan-tummaps,percolation,andstochasticLoewnerevolution,Phys.Rev.Lett.97(2006),034101.[60]D.Kelmer,Arithmeticquantumuniqueergodicityforsymplecticlinearmapsofthemultidimensionaltorus,Ann.ofMath.171(2010),815{879.[61]P.KurlbergandZ.Rudnick,Hecketheoryandequidistributionforthequanti-zationoflinearmapsofthetorus,DukeMath.J.103(2000),47{77.[62]P.KurlbergandZ.RudnickOnquantumergodicityforlinearmapsofthetorusCommun.Math.Phys.222(2001),201{227. Vol.XIV,2010Anatomyofquantumchaoticeigenstates219[81]A.Pleijel,RemarksonCourant'snodallinetheorem,Comm.PureAppl.Math.8(1956),553{550.[82]G.Riviere,Entropyofsemiclassicalmeasuresindimension2,DukeMath.J.(inpress),arXiv:0809.0230.[83]G.Riviere,Entropyofsemiclassicalmeasuresfornonpositivelycurvedsurfaces,preprint,arXiv:0911.1840.[84]Z.RudnickandP.Sarnak,Thebehaviourofeigenstatesofarithmetichyperbolicmanifolds,Commun.Math.Phys.161(1994),195{213.[85]Z.RudnickandI.Wigman,OnthevolumeofnodalsetsforeigenfunctionsoftheLaplacianonthetorus,Ann.H.Poincare9(2008),109{130.[86]M.SaracenoClassicalstructuresinthequantizedbakertransformation,Ann.Phys.(NY)199(1990),37{60.[87]A.Schnirelman,Ergodicpropertiesofeigenfunctions,UspekhiMat.Nauk29(1974),181{182.[88]R.Schubert,Upperboundsontherateofquantumergodicity,Ann.H.Poincare7(2006),1085{1098.[89]R.Schubert,Ontherateofquantumergodicityforquantisedmaps,Ann.H.Poincare9(2008),1455{1477.[90]B.Shi manandS.Zelditch,Distributionofzerosofrandomandquantumchaoticsectionsofpositivelinebundles,Commun.Math.Phys.200(1999),661{683.[91]Ja.G.Sinai,Dynamicalsystemswithelasticre ections.Ergodicpropertiesofdispersingbilliards,UspehiMat.Nauk25(1970)no.2(152),141{192.[92]J.A.TothandI.Wigman,Title:Countingopennodallinesofrandomwavesonplanardomains,preprintarXiv:0810.1276.[93]J.-M.TualleandA.Voros,Normalmodesofbilliardsportrayedinthestellar(ornodal)representation,Chaos,SolitonsandFractals5(1995),1085{1102.[94]E.VerginiandM.Saraceno,Calculationbyscalingofhighlyexcitedstatesofbilliards,Phys.Rev.E52(1995),2204{2207.[95]A.Voros,Asymptotic~-expansionsofstationaryquantumstates,Ann.Inst.H.PoincareA26(1977),343{403.[96]I.Wigman,Fluctuationsofthenodallengthofrandomsphericalharmonics,preprint0907.1648.[97]S.Zelditch,Uniformdistributionoftheeigenfunctionsoncompacthyperbolicsurfaces,DukeMath.J.55(1987),919{941.[98]S.Zelditch,QuantumergodicityofC*dynamicalsystems,Commun.Math.Phys.177(1996),507{528.