/
Eigenmodes of surface energies for shape analysis Klaus Hildebrandt Christian Schulz Christoph Eigenmodes of surface energies for shape analysis Klaus Hildebrandt Christian Schulz Christoph

Eigenmodes of surface energies for shape analysis Klaus Hildebrandt Christian Schulz Christoph - PDF document

yoshiko-marsland
yoshiko-marsland . @yoshiko-marsland
Follow
531 views
Uploaded On 2014-12-14

Eigenmodes of surface energies for shape analysis Klaus Hildebrandt Christian Schulz Christoph - PPT Presentation

In this work we study the spectra and eigenmodes of the Hessian of various discrete surface energies and discuss applications to shape analysis In particular we consider a physical model that describes the vibration modes and frequencies of a surfac ID: 24015

this work

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Eigenmodes of surface energies for shape..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2K.Hildebrandt,C.Schulz,C.vonTycowicz,K.PolthiereigenmodesoftheHessianofquadraticenergiesthatarede nedonaspaceoffunctionsonasurface.Onaplanardomain,theeigenfunctionsoftheLaplacianserveasamodelforthevibrationmodesofa atplate(Chladniplates).Forcurvedsurfacesmoreelaboratemodelsarerequiredtodescribethevibrationmodesofasurface.WeconsideraphysicalmodelthatdescribesvibrationmodesofasurfacemeshthroughtheeigenfunctionsoftheHessianofadeformationenergy.Ingeneral,computingtheHessianofadeformationenergyisadelicateandlaborioustask.But,tocomputethevibrationmodeswedonotneedtocomputetheHessianatallpointsinthespaceofpossiblesurfaces,butonlyatthepointthatrepresentsthereferencesurface.Wederiveasimpleformula,thatcanbeusedtocomputetheHessianatthereferencesurfaceforageneralclassofdeformationenergies.Wehopethatthisframeworkwillstimulatefurtherexplorationoftheeigenmodesandeigenfrequenciesofdeformationenergies.TheDirichletenergyofasurfaceisaquadraticfunctionalonanappropri-atespaceoffunctionsonasurface.TheHessianofthisenergyistheLaplace-Beltramioperatorofthesurface.WeproposeaquadraticfunctionalthatcanbederivedfromtheDirichletenergy,butisnotintrinsic.Theeigenfunctionsofthisenergyaresensitivetotheextrinsiccurvatureofthesurface.Wediscussthreeapplicationsthatusetheproposedeigenmodesandspectra.Wede netwo(multi-scale)signatures,thevibrationsignature,basedonthevibrationmodes,andthefeaturesignature,basedontheeigenmodesofthemodi edDirichletenergy.Toeachofthetwosignaturesweassociatea(multi-scale)pseudo-metriconthesurface.Theresultingvibrationdistancecanbeusedasasimilaritymeasureonthesurfaceandthefeaturedistancecanidentifyfeaturesofamesh.Furthermore,wetestthespectralsurfacequadrangulationmethodofDongetal.[6]withspeci cvibrationmodes,insteadofeigenfunctionsoftheLaplacian.Theresultingquadrangulation,inouropinion,alignsbetterwiththeextrinsiccurvatureofthesurface.Relatedwork.Recently,wehaveseenaboomofpapersthatusetheeigen-valuesandeigenfunctionsoftheLaplace-Beltramioperatorasaningredienttoalgorithmsingeometryprocessingandshapeanalysis.Anoverviewofthisde-velopmentcanbefoundintherecentsurveybyZhangetal.[29]andinthecoursenotesofaSiggraphAsia2009courseheldbyLevyandZhang[16].Here,wecanonlybrie youtlinetheworkthathasbeenmostrelevantforthispaper.ThespectrumoftheLaplace-BeltramioperatorofaRiemannianmanifoldcontainsasigni cantamountofinformationaboutthemanifoldandthemetric.ThoughitdoesnotfullydeterminetheRiemannianmanifold,itcanbeusedasapowerfulshapedescriptorofaclassofisometricRiemannianmanifolds.Reuteretal.[21,22]usethespectrumoftheLaplace-Beltramioperatortoconstructa ngerprintofsurfaces,whichtheycalltheShape-DNA.Byconstructionthis ngerprintisinvariantunderisometricdeformationsofasurface.AmongotherapplicationstheShape-DNAcanbeusedforshapematching,copyrightprotec-tion,anddatabaseretrieval.Rustamov[23]developedtheGlobalPointSignature(GPS),asignaturethatcanbeusedtoclassifyshapesuptoisometry.Based Eigenmodesofsurfaceenergiesforshapeanalysis5 Fig.2.Twoeigenmodesofthelowerspectrumonthedoubletoruswithsharpfeatures,left:Laplacian,andright:modi edDirichletenergy.whereeiisthedihedralangleattheedgeei,Aeiisthecombinedareaofthetwotrianglesincidenttoeiandkeikisthelengthoftheedge.Thequantitieskeik;Aei;andeiaremeasuredonthereferencemesh.Towritethis exuralenergyinthegeneralform(1)wesetfi=eiand!i=3keik2 Aei:Themembraneenergyconsistsoftwoterms:onemeasuringthestretchingoftheedges,EL=1 2Xi1 keik(keik�keik)2;(3)andonemeasuringthechangeofthetriangleareasAiEA=1 2Xi1 Ai(Ai�Ai)2:(4)Herethesecondsumrunsoverthetrianglesofthemesh.WecandescribeELinthegeneralform(1)bysettingfi=keikand!i=1 keik;andtodescribeEAwesetfi=Aiand!i=1 Ai:3ModesofDeformationEnergiesModalanalysisprovideswaystocomputethemodesofasurfacewithrespecttoadeformationenergy.Toinspectthemodesofamesh,givenbya3n-vectorx,weconsideradeformationenergyE(x)thathasxasareferencesurface.Then,weareinterestedintheeigenvaluesandeigenmodesoftheHessianofthedefor-mationenergyEatthemeshx2X. 6K.Hildebrandt,C.Schulz,C.vonTycowicz,K.PolthierTheHessianofadeformationenergy(ormoregeneralofafunction)doesnotdependsolelyonthedi erentiablestructureofX,butalsoonthemetriconX,hencebelongstoRiemanniangeometry.Therefore,beforeconsideringtheHessianofEweequipXwithametric.SinceXequalsR3n;thetangentspaceTxXatameshxcanbeidenti edwithR3n.WecaninterpretanelementofTxXasavector eldonx,thatassignsavectorinR3toeveryvertexofx.Then,anaturalchoiceofascalarproductonTxXisadiscreteL2-product,e.g.,themassmatrixusedinFEM[28]orthediscreteL2-productusedinDEC[5,27].Wedenotethematrix,thatdescribesthescalarproductonTxXbyMx.Forcompleteness,wewouldliketomentionthatifxisameshthathasdegeneratetriangles,thediscreteL2-productonTxXmaybeonlypositivesemi-de nite.However,awayfromtheclosedsetofmeshesthathaveatleastonedegeneratetriangle,XequippedwiththediscreteL2-productisaRiemannianmanifold.Wedenoteby@Exthe3n-vectorcontainingthe rstpartialderivativesofEatxandby@2Exthematrixcontainingthesecondpartialderivativesatx.Wewouldliketoemphasizethat@Exand@2ExdonotdependonthemetriconX,whereasthegradientandtheHessianofEdo.ThegradientofEatxisgivenbygradxE=M�1x@Ex:(5)TheHessianofEatameshxistheself-adjointoperatorthatmapsanytangentvectorv2TxXtothetangentvectorhessxE(v)2TxXgivenbyhessxE(v)=rvgradxE;(6)whereristhecovariantderivativeofX.Hessiancomputation.Ingeneral,itisadelicatetasktoderiveanexplicitrepresentationoftheHessianofadeformationenergyandoftenonlyapproxi-mationsoftheHessianareavailable.Here,wederiveasimpleexplicitformulafortheHessianofadeformationinthegeneralform(1)atthepointx,whichinvolvesonly rstderivativesofthefi's.SincethegradientofEvanishesatx,onecanshowthatatxtheHessianofEtakesthefollowingformhessxE=M�1x@2Ex:Hence,atxwedonotneedderivativesofthemetrictocomputehessxE.Fur-thermore,tocomputethesecondpartialderivativesofEatxwedonotneedtocalculatesecondderivatives,butweonlyneedthe rstderivativesofthefi's.Wepresentanexplicitformulafor@2ExinthefollowingLemma.Lemma1(ExplicitHessian).LetEbeadeformationenergyoftheform(1).Then,thematrix@2ExcontainingthesecondderivativesofEatxhastheform@2Ex=Xi!i(x)@fix@fixT;(7)where@fixTdenotesthetransposeofthevector@fix. Eigenmodesofsurfaceenergiesforshapeanalysis9 Fig.4.VisualizationofmodesoftheLaplacian(threeimagesontheleft)andmodesofthethinshellenergyrestrictedtonormalvariations(threeimagesontheright).where'isafunctiononthemesh.Thecorrespondingeigenvalueproblemis@2ENx'=Mx';whereMxisthemassmatrixthatrepresentsthediscreteL2-productoffunctionsonthemeshx.4QuadraticEnergiesInadditiontoenergiesde nedonthespaceofmeshesX,weconsiderenergiesthatarede nedonanappropriatespaceoffunctionsonasurface.Inparticular,weconsidertheDirichletenergy,thatonacompactsmoothsurfaceisde nedforweaklydi erentiablefunctions':!R(thatvanishattheboundaryof)byE(')=1 2Zkgrad'k2dA:(13)Thisisanintrinsicenergy,therefore,theenergyanditseigenmodesdonotchangeunderisometricdeformationsofthesurface.Forsomeapplicationsthisisadesiredfeature,forotherapplicationsitisnot.BymodifyingtheDirichletenergy,weconstructanewenergythatisextrinsic.AssumethatisanorientablesurfaceinR3andletdenotethenormalof.Then,allthreecoordinateskofaresmoothfunctionsandforaweaklydi erentiablefunction'theproduct'kisweaklydi erentiable.Wede neEN(')=3Xk=1E('k):(14) 10K.Hildebrandt,C.Schulz,C.vonTycowicz,K.PolthierThisenergysatis estheequationEN(')=E(')+1 2Z'2(21+22)dA;(15)where1and2aretheprincipalcurvaturesof.ThismeansthatEND(')isthesumoftheDirichletenergyof'andthe'2-weightedtotalcurvatureof.Discreteenergies.Inthediscretesetting,weconsiderameshx2XandthespaceFxofcontinuousfunctionsu:x!Rthatarelinearineverytriangle.Suchafunctionisdi erentiableintheinteriorofeverytriangle,andhenceonecandirectlyevaluatetheintegral(13).ForarigoroustreatmentofthisdiscreteDirichletenergyandaconvergenceanalysissee[7,13].AfunctioninFxisalreadydeterminedbyitsfunctionvaluesattheverticesofx,henceitcanberepresentedbyann-vector.Then,thediscreteDirichletenergyEDisaquadraticfunctionalonFx,andforafunctionu2Fx(representedbyann-vector)ED(u)isexplicitlygivenbyED(u)=1 2uTSu;(16)whereSistheusualcotan-matrix,see[19,28].TodiscretizetheenergyENwe xanormaldirectionateveryvertexofthemesh,andwedenotetheorientedunitnormalvectoratavertexvibyN(vi).Then,wesayacontinuousandpiecewiselinearvector eldVonxisanormalvector eldifforeveryvertexviofxthevectorV(vi)isparalleltoN(vi).Thespaceofnormalvector eldsonxisann-dimensionalvectorspaceandthemapthatmapsafunctionu2FxtothenormalvariationVu,givenbyVu(vi)=u(vi)N(vi)forallvi2x,isalinearisomorphism.ThethreecoordinatefunctionsVkuofVuarefunctionsinFxandwede nethediscreteenergyENDanalogtoeq.(14)byEND(u)=3Xk=1ED(Vku):AsimplecalculationshowsthattheenergyENDsatis esEND(u)=1 2uTAu;(17)wheretheformulaAij=hN(vi);N(vj)iSijrelatestheentriesAijofthematrixAtotheentriesSijofthecotan-matrixS.ThecomputationoftheHessianoftheDirichletenergyEDandtheenergyENDissimple.Bothenergiesarequadratic,thereforetheHessianisconstantandthematrices@2EDand@2ENDarethematricesSandAgiveninequations(16)and(17).ThemetricweconsideronFxisthediscreteL2-productgivenbythemassmatrixM.TheeigenvaluesandeigenfunctionsoftheHessianofED(resp.END)satisfythegeneralizedeigenvalueproblemS=M(resp. 12K.Hildebrandt,C.Schulz,C.vonTycowicz,K.PolthierThesignaturesweconsideraremulti-scalesignatures,whichtakeapositivescaleparametertasinput.Foreverytsuchasignatureisafunctiononthemesh,i.e.,itassociatesarealvaluetoeveryvertexofthemesh.Letvbeavertexofameshxandlettbeapositivevalue.Then,wede nethevibrationsignatureofxatvertexvandscaletbySVibt(v)=Xje�jtkj(v)k2;(18)wherejandjdenotetheeigenvaluesandtheL2-normalizedvector-valuedvibrationmodesofameshx.Thevaluekj(v)kdescribesthedisplacementofthevertexvundertheL2-normalizedvibrationmodej.Fora xedtthevi-brationsignatureofvmeasuresaweightedaveragedisplacementofthevertexoverallvibrationmodes,wheretheweightofthejtheigenmodeise�jt.Theweightsdependontheeigenvaluesandonthescaleparameter.Forincreasing;thefunctione�trapidlydecreases,e.g.,themodeswithsmallereigenvaluereceivehigherweightsthanthemodeswithlargeeigenvalues.Furthermore,forincreasingtallweightsdecrease,and,moreimportantly,theweightsofthevi-brationmodeswithsmallereigenvaluesincreasesrelativetotheweightsofthemodeswithlargereigenvalues.Thefeaturesignatureisconstructedinasimilarmanner,butitusestheeigenmodesandeigenvaluesofthemodi edDirichletenergyEND.Wede neSFeatt(v)=Xje�jtj(v)2(19)wherethejaretheeigenvaluesandthej(v)aretheL2-normalizedeigenmodesoftheHessianofthemodi eddiscreteDirichletenergyEND.Multi-scaledistances.Fromeachofthetwosignatureswecanconstructthefollowing(multi-scale)pseudo-metriconthemesh:letv,~vbeverticesofthemeshx,thenwede ne[t1;t2](v;~v)= Zt2t1(St(v)�St(~v))2 Pke�ktdlogt!1 2:(20)Byconstruction,foranypairofscalevaluest1t2,[t1;t2]ispositivesemi-de niteandsymmetric,andonecanshowthatitsatis esthetriangleinequal-ity.Wecallthepseudo-metricsconstructedfromSVibtandSFeattthevibrationdistanceandthefeaturedistance.Theideabehindtheconstructionofthepseudo-metricistousetheintegralRt2t1(St(v)�St(~v))2dt.However,theactualde nitionadditionallyincludestwoheuristics.First,sinceforincreasingtthevaluesSt(v)decreasesforallv,wenormalizethevalue(St(v)�St(~v))2bydividingitbythediscreteL1-normofSt,kStkL1=Pke�kt: 14K.Hildebrandt,C.Schulz,C.vonTycowicz,K.Polthier vFig.7.Comparisonoftwosimilaritymeasures.Distancetovertexvinbinaryaswellascontinuouscoloringbasedonourvibrationsignature(leftmost)andtheheatkernelsignature(rightmost).Spectralzoo.WecomparetheeigenmodesoftheLaplaciantotheonesofthemodi edDirichletenergyENDandtothevibrationmodesofthethinshellenergyrestrictedtonormalvariations.Toconveyanimpressionofthecharacteristicsofthemodesofthedi erentenergies,weshowsomeexamplesinFigures1,2and4.Tovisualizethemodesweusebluecolorforpositivevalues,whiteforzerocrossings,andorangefornegativevalues.Additionally,wedrawisolinesasblacklines.Asa rstexample,westudyhowtheeigenmodeschangewhenweisometri-callydeforma atplate,seeFig.1.Ontheundeformed atplate,theeigenmodesofENDequaltheeigenmodesoftheLaplacian.AsshowninFig.1,therearecer-taindi erencesbetweenthethreetypesofconsideredmodeswhencomputedonthedeformedplate.DuetoitsintrinsicnaturetheLaplacianeigenmodesignorethenewlyintroducedfeature,Fig.1left.Incontrast,theeigenmodesofENDandthevibrationmodesaresensitivetothefeature,Fig.1middleandright.TheeigenmodesofENDcorrespondingtolowereigenvaluesalmostvanishatthefeatureandthevibrationmodesplaceadditionalextremaonthefold.Investigatingthedi erencesbetweentheeigenmodesoftheLaplacianandENDfurther,wecomputethemonthedoubletoruswithsharpfeaturesshowninFig.2.ItcanbeseenthateachoftheshownLaplacianeigenmodescontainsamoreorlessequallydistributedsetofextremaaswellasacertainre ectionsymmetry,Fig.2left.Thecorrespondingisolinessuggestalowin uenceofthesharpfeaturestotheconsideredLaplacianeigenmodes.SimilartotheLaplacianmodesthetwoeigenmodesforENDalsopossesare ectionsymmetry,Fig.2right.Butherewe ndthattheeigenmodesofthelowerpartofthespectrumcorrespondtooscillationsof atareassurroundedbysharpedges,Fig.2right.ThismatchesourconsiderationsinSection4.Forathirdcomparison,wechooseamodelwithoutsharpedges,thedancer(25kvertices).WecomparetheeigenmodesoftheLaplaciantothemodesofthethinshellenergyrestrictedtonormalvariations,seeFig.4.AsinthecaseofthetoruswenoticethattheLaplacianeigenmodesoscillateequallyoverthewhole