fr Grald Masini ORIA C NRS masiniloriafr Karl Tombre ORIA I NPL tombreloriafr Abstract In the context of graphics recognition arc detection con sists in the extraction of circles and arcs from the image of a graphics document or from the segments yie ID: 24336 Download Pdf
16/03/2011. 1. Rui. Min. Multimedia Communications Dept.. EURECOM. Sophia . Antipolis. , France. min@eurecom.fr. Abdenour. . Hadid. . Machine Vision Group. University of Oulu. Oulu, Finland. hadid@ee.oulu.fi.
Erik M. Heden. History of DSS at Binghamton. Bad Graphics. Too Course. .. No forecasts outside our area. .. Not visually appealing. .. Landmarks?. Improving Graphics. Updated to include ranges and a better set of colors.
Traf64257c sign analysis can be divided in three main problems automatic location detec tion and categorization of traf64257c signs Basically most of the approaches in locating and detecting of traf64257c signs are based on color information extract
. USING MODIFIED GENERALISED HOUGH TRANSFORM. Samara National Research . University. Image Processing Systems Institute - Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences.
HitachiGlobalStorageTechnologies,SanJoseResearchCenter,SanJose,CA95135USA CNRS-Nancy-Universit
detection, some hard decisions are made, which may hide useful information for the learning scheme. scheme. that such edge detectors are cases were alternative preprocessing normalized gre
Schyns Department of Psychology Uni ersity of Glasgow 58 Hillhead Street Glasgow G 12 8 QB Scotland UK Received 31 August 2000 received in revised form 3 December 2000 Abstract Everyday people 64258exibly perform different categorizations of common
:. A Literature Survey. By:. W. Zhao, R. Chellappa, P.J. Phillips,. and A. Rosenfeld. Presented By:. Diego Velasquez. Contents . Introduction. Why do we need face recognition?. Biometrics. Face Recognition by Humans.
on Support . Vector . Machines. Saturnino. , Sergio et al.. Yunjia. Man. ECG . 782 Dr. Brendan. Outline. 1. Introduction. 2. Detection and recognition system. Segmentation. Shape classification.
Badruz. . Nasrin. Bin Basri. 1051101534. . Supervisor : . Mohd. . Haris. Lye Abdullah. 1. Contents. Introduction. 1. Literature review . 2. Method . Used. . 3. Experiment and Result. 4. Future works.
Published byyoshiko-marsland
fr Grald Masini ORIA C NRS masiniloriafr Karl Tombre ORIA I NPL tombreloriafr Abstract In the context of graphics recognition arc detection con sists in the extraction of circles and arcs from the image of a graphics document or from the segments yie
Download Pdf - The PPT/PDF document "Improving Arc Detection in Graphics Reco..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
ImprovingArcDetectioninGraphicsRecognitionPhilippeDoschORIA-UniversitédeNancy2GéraldMasiniORIANRSKarlTombreORIANPLInthecontextofgraphicsrecognition,arcdetectioncon-sistsintheextractionofcirclesandarcsfromtheimageofagraphicsdocumentorfromthesegmentsyieldedbyitsvectorization.Severalmethodshavebeenproposedforthispurpose,andwebrieysurveytheminthispaper.Then,wedescribeanimprovedalgorithminspiredbytwoexistingmethods,andincludingattingstepforabetterprecision.1.IntroductionGraphicsrecognitiontechniquesareslowlymaturingatleastthelow-levelimageprocessing,segmentationandvectorizationstepsandemphasishasbeenputonrobuststablemethods,whichcanbeimplementedasasetofstablesoftwarecomponents,reusablefromoneapplicationtotheother[3,7].Acentralaspectingraphicsrecognitionvectorizationi.e.theraster-to-graphicsconversionpro-cess[8].Tobecompleteandusefulforhigher-levelrecog-nitionandanalysisphases,vectorizationshouldnotbelim-itedtotherecognitionofstraightlineprimitives,butshouldatleastincludeareliablecirculararcdetectionprocess.Itmayactuallycoverevenmorethanthat,ashigher-levelpro-cessesoftenneedtoworkonanextendedsetofgraphicalprimitives,suchasdashedlines,cross-hatchedareas,etc.,toprovideusefulresults.Afterhavingdesignedwithgreatcareastableandro-bustvectorizationprocess[8],wethereforeturnedtothetaskofreliablyrecognizingarcs.Aswehavedoneinthepast[7],ouraimwasnotnecessarilytodesignanewandashymethod,buttoreuseasoftenaspossiblethebestapproachesfromtheeld.Therefore,westartedourworkbycombiningthebestoftwoapproaches,Rosin&West'sedgesegmentationmethod[6]andDori'svector-basedarcsegmentation[1].However,wefounditnecessarytoaddattingprocesstobetteradjustadetectedarcwiththepixelsofitsskeletonintheimage. Commonaddress:LORIA,B.P.239,54506Vanduvre-lès-NancyCedex,FranceInthispaper,afterabriefoverviewofthemethodsonwhichwebaseourapproach,andadescriptionoftheirlim-itations(§2),wepresentthemethodwehavedesignedandtheguidelineswefollowed(§3).Weconcludewithsomeresultsandperspectives(§4).2.TheBaseofourApproachAccordingtoDori[1],therearetwomainfamiliesofarcdetectionmethods.ThemethodsoftherstfamilyarebasedontheHoughtransformanddirectlyworkontheoriginalpixelsofthegraphicsimage.Suchatechniqueiswell-knownandprovestobequiterobustinthepresenceofnoise.However,itiscomputationallyexpensiveanddoesnotprovideenoughaccuracyinthelocalizationofthecen-terandendpointsofthedetectedarcs.Thisstemsfromtheverylowlevelatwhichtheinformationisprocessed.Thesecondfamilyofmethodsworksonchainsofpoints,oronsegmentsyieldedbythepolygonalapproximationofsuchchains.Thebasicideaistocomputeanestimationofthecurvatureforthesechains.Thisapproachtypicallyiswhatwearelookingfor,asourvectorizationprocessisbasedonthecomputationofadistanceskeleton.Thepixelsoftheskeletonarethenlinkedtogethertoformchains,andapolygonalapproximationconvertsthechainsintostraightlinesegments.Insteadofdiscardingthechainsafterthat,wehavetakentheoptiontokeepthem,sothattheycanbeusedbythettingprocess.Rosin&West[6]proposeamethodbasedonrecursivesplitting,forsegmentingacurveintoasetofarcsandseg-ments.ItisanextensionofapreviousworkbyLowe[4]tondpointsofmaximumcurvature(Fig.1).Suchapointiscomputedusingaratiobetweenthemaximumdeviationandthelengthoftheapproximatingsegments.WhereasLoweusesthisfeaturetoapproximateachainbyasetofseg-ments,Rosin&Westaddtherecognitionofarcs,whenanarcisabetterapproximationoftheoriginalchain.Asanarcrequiresmoreparametersthanastraightseg-ment,thesimpleratiomeasurementionedaboveisnotenoughtocharacterizeanarc.Therefore,Rosin&Westtakeconnectivity(arcsaresupposedtostartandendatthe (a)Initialarcpassingthroughtheendpointsofa (b)Pointofmaximumdevi- (c)Splittingthechain. (d)Finalarc.Figure1.PrincipleofRosin&West'smethod. CG d(C)=13.0087d(D)=18.8197d(E)=8.15986d(F)=12.0387d(G)=18.2674Figure2.Exampleofinadequatesplittingatamaximumdeviationpoint(D).extremitiesofthesegmentsofthepolygonalapproxima-tion)andgeometry(thecenterofthearcmustbeequidistanttobothextremities,whichstronglyconstrainsitsposition)intoaccount.Inthisway,thepositionofanarccanbecom-putedthroughsimpleleastsquaresminimization.Thismethodisveryinteresting,asitdoesnotrequireanyexplicitthreshold.Weactuallyuseitforourpolyg-onalapproximationbecauseofthisveryreason.More-over,althoughthesignicancemeasure,i.e.theratiodeviation=length,maybeconsideredtobetoosimplis-tic,Rosinhasproposedothersignicancemeasureswhichmayfurtherimprovethemethod[5].Nevertheless,themethodhasalsoitslimitations.Theinitiallistofpointsissplitatthepointofmaximumdevia-tion,andarcdetectionisperformedagainoneachsublist.Insomecases,asillustratedbygure2,themaximumdevi-ationpointisnotthemostrelevantoneandthesubsequent OAB CED OPQ Figure3.Dori'smethodforcomputingthecenterofapotentialarc.P(resp.Q)isthecenterofsubarcCB(resp.AC).splittingdoesnotleadtoacorrectrecognition.DovDoriandhisteamhavedesignedanothermethod,calledSRAS[1],whichworksiteratively.Asparse-pixelvectorizationofthedocument[2]extractsso-calledbarsthataregroupedtoformpolylines.Thesepolylinesinturnareusedaskeysinthearcrecognitionprocess.Thresholdsareappliedtoselectbarswhicharenottooshortandnottoolong,andwhichformpairswiththerightangularorien-tation.Arstpositionofthecenterofthearccanthenbecomputed.Thispositionisrenedbyusingalltheverticesofthepolylineinvolvedinthearchypothesis.Apotentialarccenterareaisthusdetermined,andeachpixeloftheareaistested,usinganaveragedsquaredistancetooptimizethepositionofthecenter(Fig.3).Afterthevalidationofthisinitialarchypothesis,thealgorithmtriestostepwiseextendthearcatitsextremities,bysearchinginpotentialextensionareasandtestingthearchypothesisagain,intermsofwidth,angularmeasuresandpolylinecontinuity.Foreachpossi-bleextension,thenewcenteriscomputed,accordingtotheprinciplesdescribedpreviously.Themethodyieldsgoodresults,butislimitedbytheuseofacertainnumberofthresholds,inparticulartodeterminethecenterofthearc.Dori'sandRosin&West'smethodsbothshareanotherlimitation:Thearchypothesesandthecomputationoftheerrorarebasedonthepolygonalapprox-imationofthegraphicimage.Althoughtheapproximationisveryusefultondtherighthypothesesinanefcientwayandwithoutlosingtheconnectivity,itleadstouncontrolledlocationerrorswhenreferringbacktotheoriginalimage.Thisexplainsourperceivedneedforattingstep,tomakearchypothesesmatchtheirpixelrepresentations.3.FittingArcHypothesestotheSkeletonThemethodwedesignedisbasicallyinspiredbythatofRosin&West,butweincludedtwoideasfromDori'smethod:Thewaytocomputethecenterofthearc,andtheuseofpolylinesinsteadofsimplesegments.Wealsoaddedsomeimprovements.Themostimportantofthemconcernsthecomputationoftheerrorassociatedwithanarchypoth- StepwiseRecoveryArcSegmentationAlgorithm. esis:Itisnolongerperformedwithrespecttothepolyg-onalapproximation,butwithrespecttotheoriginalchainofskeletonpixels.Infact,eachsetofsegmentsdeliveredbythepolygonalapproximationstepofourvectorizationprocessisassociatedwiththepixelchainthatthesegmentsapproximate.Segmentsaregroupedintopolylines,eachpolylinebeingtheapproximationofacompletechain.Theoriginallinkedchaincorrespondingtoapolylinecanthenberetrievedusingasimpleindex.Ourarcdetectionalgorithmworksintwophases:Archypothesesgenerationandvalidationofthehypotheses.Thehypothesesarebuiltfromthepolygonalapproxima-tion.Let;:::;Sbeachainofconnectedsegments,describedbytheirextremities;:::;P,suchthat:Itcontainsatleastfourpoints(asthereisalwaysapos-siblearcpassingthroughthreepoints),thesuccessiveanglesarequitethesame.Suchachainisretainedasanhypothesistobeexaminedbythearcdetectionprocess.Ifthechainasawholecan-notbeconsideredasrepresentinganarc,asegmentisre-movedatoneoftheextremitiesofthechain,andthechainistestedagain,untilavalidarcisfoundoruntiltherearetoofewpointsforapertinenthypothesis.ThetestphaseisperformedusingRosin&West'sleastsquaresminimiza-tionapproach.Theerrorisnotestimatedusingthesegmentsofthepolygonalapproximation,butusingthesubchainsofpoints,whichcanberetrievedthankstoourindexingstruc-ture,aspreviouslymentioned.Themethodalsodetectsfullcircles.Whenworkingonaclosedloopofsuccessivesegments,oneofthesegmentsiseliminatedbeforeapplyingarcdetection.Ifauniquearc,includingallthesegments,isdetected,thepresenceofacircleistestedbycheckingthevalidityofthelastsegment.4.ResultsandConclusionInthefallofSeptember,themethodparticipatedintheThirdIAPRGraphicsRecognitioncontest,wherecompletevectorizationmethodsarerunonground-trutheddata.Atthetimeofwritingthispaper,wearestillawaitingtheper-formanceevaluationresultsonthesedata.Figure4illustratesresultsobtainedfromarathersimplearchitecturaldrawing.WithRosin&West'srawmethod,falsearcsaredetectedduetochainsofshortsegmentspro-videdbythevectorization,inparticulararoundjunctionpoints(Fig.4b).Thesearcsdisappearwhenusingourimprovedmethod,andfullcirclesarecorrectlyextracted(Fig.4c).Arclocationisalsomoreaccurate(Fig.4d),al-thoughitisnotplainlyemphasizedbythegure(drawingsshouldbedisplayedatalargerscale).Therearestillseveralpossibleimprovementstothemethod.Oneofthemistotestarchypothesesonmorethanonepolyline,astheskeletonlinkingalgorithmstartsnewchainsateachjunction.Thiswouldleadtothepossibilityofrecognizingasinglearc,evenwhenitiscrossedbyanotherline,ortorecognizetwofullarcswhenevertheyshareshortsegmentslikethosepointedbydottedarrowsongure4d.Themaindifcultyheredoesnotconcernthemethod,butthecomputationalcomplexityoftheimplementation.Wealsostillhavethresholdsinthemethod,especiallyforthesimilaritybetweentwoangularmeasures.ApossibleimprovementwouldbetoextendRosin&West'sworktodenerelevantsignicancemeasuresforarcs.AcknowledgmentsWewouldliketothankWissamDagher,NicolasLieber,AntoineSorbaandSéverinVoisin,whoparticipatedintheimplementationworkforalargepart.References[1]D.DoriandW.Liu.Stepwiserecoveryofarcsegmentationincomplexlineenvironments.InternationalJournalonDoc-umentAnalysisandRecognition,1(1):6271,Feb.1998.[2]D.DoriandW.Liu.SparsePixelVectorization:AnAlgo-rithmandItsPerformanceEvaluation.IEEETransactionsonPAMI,21(3):202215,Mar.1999.[3]P.Dosch,C.Ah-Soon,G.Masini,G.Sánchez,andK.Tombre.DesignofanIntegratedEnvironmentfortheAu-tomatedAnalysisofArchitecturalDrawings.InS.-W.LeeandY.Nakano,editors,DocumentAnalysisSystems:The-oryandPractice.SelectedpapersfromThirdIAPRWorkshop,DAS'98,Nagano,Japan,November46,1998,inrevisedver-,LectureNotesinComputerScience1655,pages295309.Springer-Verlag,Berlin,1999.[4]D.Lowe.Three-DimensionalObjectRecognitionfromSin-gleTwo-DimensionalImages.ArticialIntelligence,31:355395,1987.[5]P.L.Rosin.TechniquesforAssessingPolygonalApproxima-tionofCurves.IEEETransactionsonPAMI,19(6):659666,June1997.[6]P.L.RosinandG.A.West.SegmentationofEdgesintoLinesandArcs.ImageandVisionComputing,7(2):109114,May[7]K.Tombre,C.Ah-Soon,P.Dosch,A.Habed,andG.Masini.Stable,RobustandOff-the-ShelfMethodsforGraphicsRecognition.InProceedingsofthe14thInternationalCon-ferenceonPatternRecognition,Brisbane(Australia),pages406408,Aug.1998.[8]K.Tombre,C.Ah-Soon,P.Dosch,G.Masini,andS.Tab-bone.StableandRobustVectorization:HowtoMaketheRightChoices.InProceedingsof3rdInternationalWorkshoponGraphicsRecognition,Jaipur(India),pages316,Sept.1999.RevisedversiontoappearinaforthcomingLNCSvol- (a)Originalimage.(b)ArcdetectionusingRosin&West'srawmethod. (c)Arcdetectionusingourmethod.(d)Superpositionofbothresults.Figure4.Resultsofarcdetection.
© 2021 docslides.com Inc.
All rights reserved.