edu Piotr Indyk MIT indykmitedu Abstract We present an algorithm for the approximate near est neighbor problem in a dimensional Euclidean space achieving query time of dn c 1 and space dn 11 c 1 This almost matches the lower bound for hashingbased a ID: 2306 Download Pdf
In the first part we survey a family of nearest neighbor algorithms that are based on the concept of locality sensitive hashing Many of these algorithm have already been successfully applied in a variety of practical scenarios In the second part of
Josef . Sivic. http://. www.di.ens.fr. /~josef. INRIA, . WILLOW, ENS/INRIA/CNRS UMR 8548. Laboratoire. . d’Informatique. , . Ecole. . Normale. . Supérieure. , Paris. With slides from: O. Chum, K. .
The analysis uses only very basic and intuitively understandable concepts of probability theory and is meant to be accessible even for undergraduates taking their 64257rst algorithms course 1 Introduction dictionary is a data structure for storing a
ℓ. p. –spaces (2<p<∞) via . embeddings. Yair. . Bartal. . Lee-Ad Gottlieb Hebrew U. Ariel University. Nearest neighbor search. Problem definition:. Given a set of points S, preprocess S so that the following query can be answered efficiently:.
Exact Nearest Neighbor Algorithms Sabermetrics One of the best players ever .310 batting average 3,465 hits 260 home runs 1,311 RBIs 14x All-star 5x World Series winner Who is the next Derek Jeter? Derek Jeter
J Watson Research Center and Yury Makarychev Microsoft Research New England In this paper we present two approximation algorithms for the maximum constraint satisfaction problem with variables in each constraint MAX CSP Given a 1 satis64257able 2CSP
Up to this point the greatest drawback of cuckoo hashing appears to be that there is a polynomially small but practically signicant probability that a failure occurs during the insertion of an item requiring an expensive rehashing of all items in th
Shannon Quinn. (with . thanks to William Cohen of Carnegie Mellon University, and J. . Leskovec. , A. . Rajaraman. , and J. Ullman of Stanford . University). First: Upcoming deadlines!. TONIGHT @ 11:59:59pm: Assignment 3!.
In static hashing, function . h. maps search-key values to a fixed set of . B. . buckets, that contain a number of (K,V) entries.. . . Problem: d. atabases . grow . (or shrink) . with time. . If initial number of buckets is too small, and file grows, performance will degrade due to too much overflows..
Lecture Note #15. Hashing. For efficient look-up in a table. Objectives. 2. [CS1020 Lecture 15: Hashing]. References. 3. [CS1020 Lecture 15: Hashing]. Outline. Direct Addressing Table. Hash Table. Hash Functions.
Published byyoshiko-marsland
edu Piotr Indyk MIT indykmitedu Abstract We present an algorithm for the approximate near est neighbor problem in a dimensional Euclidean space achieving query time of dn c 1 and space dn 11 c 1 This almost matches the lower bound for hashingbased a
Download Pdf - The PPT/PDF document "NearOptimal Hashing Algorithms for Appro..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Near-OptimalHashingAlgorithmsforApproximateNearestNeighborinHighDimensionsAlexandrAndoniMITandoni@mit.eduPiotrIndykMITindyk@mit.eduAbstractWepresentanalgorithmforthec-approximatenear-estneighborprobleminad-dimensionalEuclideanspace,achievingquerytimeofO(dn1=c2+o(1))andspaceO(dn+n1+1=c2+o(1)).Thisalmostmatchesthelowerboundforhashing-basedalgorithmrecentlyobtainedin[27].Wealsoobtainaspace-efcientversionofthealgorithm,whichusesdn+nlogO(1)nspace,withaquerytimeofdnO(1=c2).Fi-nally,wediscusspracticalvariantsofthealgorithmsthatutilizefastbounded-distancedecodersfortheLeechLat-tice.1.IntroductionThenearestneighborproblemisdenedasfollows:givenacollectionofnpoints,buildadatastructurewhich,givenanyquerypoint,reportsthedatapointthatisclos-esttothequery.Aparticularlyinterestingandwell-studiedinstanceiswherethedatapointsliveinad-dimensionalEu-clideanspace.Thisproblemisofmajorimportanceinsev-eralareas;someexamplesare:datacompression,databasesanddatamining,informationretrieval,imageandvideodatabases,machinelearning,patternrecognition,statisticsanddataanalysis.Typically,thefeaturesofeachobjectofinterest(document,image,etc)arerepresentedasapointindandthedistancemetricisusedtomeasuresimilarityofobjects.Thebasicproblemthenistoperformindexingorsimilaritysearchingforqueryobjects.Thenumberoffea-tures(i.e.,thedimensionality)rangesanywherefromtenstothousands.Thereareseveralefcientalgorithmsknownforthecasewhenthedimensiondis“low”(see[30]foranoverview).Thereforethemainissueisthatofdealingwithalargenum-berofdimensions.Despitedecadesofintensiveeffort,the ThisworkwassupportedinpartbyNSFCAREERawardCCR-0133849,DavidandLucillePackardFellowshipandAlfredP.SloanFel-lowship.currentsolutionssufferfromeitherspaceorquerytimethatisexponentialind.Infact,forlargeenoughd,intheoryorinpractice,theyoftenprovidelittleimprovementoveralinearalgorithmthatcomparesaquerytoeachpointfromthedatabase.Thisphenomenonisoftencalled“thecurseofdimensionality”.Inrecentyears,severalresearchersproposedmethodsforovercomingtherunningtimebottleneckbyusingapproxi-mation(e.g.,[7,23,21,25,16,24,17,12,8,28,1],seealso[31]).Inthatformulation,thealgorithmisallowedtoreturnapoint,whosedistancefromthequeryisatmostctimesthedistancefromthequerytoitsnearestpoints;c=1+1iscalledtheapproximationfactor.Theappealofthisapproachisthat,inmanycases,anapproximatenear-estneighborisalmostasgoodastheexactone.Inpartic-ular,ifthedistancemeasureaccuratelycapturesthenotionofuserquality,thensmalldifferencesinthedistanceshouldnotmatter.Moreover,anefcientapproximationalgorithmcanbeusedtosolvetheexactnearestneighborproblem,byenumeratingallapproximatenearestneighborsandchoos-ingtheclosestpoint.Formanydatasetsthisapproachre-sultsinveryefcientalgorithms(seee.g.,[4]).In[25,21,8,1],theauthorsconstructeddatastructuresforthe(1+)-approximatenearestneighborproblemwhichavoidedthecurseofdimensionality.Specically,foranyconstant0,thedatastructuressupportqueriesintimeO(dlogn),andusespacewhichispolynomialinn.Unfor-tunately,theexponentinthespaceboundsisroughlyC=2(for1),whereCisa“non-negligible”constant.Thus,evenfor,say,=1,thespaceusedbythedatastructureislargeenoughsothatthealgorithmbecomesimpracticalevenforrelativelysmalldatasets.Infact,inarecentpa-per[6]weshowthat,inordertosolvethedecisionversionoftheapproximatenearestneighborproblem,theexponentinthespaceboundmustbeatleast\n(1=2),aslongasthesearchalgorithmperformsonlyaconstantnumberof“probes”tothedatastructure.Thealgorithmsof[25,21]useonlyoneprobe.In[21,15],theauthorsintroducedanalternativeap-proach,whichusesmuchsmallerspacewhilepreserving1 sub-linearquerytime(seeFigure1fortherunningtimes).Itreliesonaconceptoflocality-sensitivehashing(LSH).Thekeyideaistohashthepointsusingseveralhashfunc-tionssoastoensurethat,foreachfunction,theprobabilityofcollisionismuchhigherforobjectswhichareclosetoeachotherthanforthosewhicharefarapart.Then,onecandeterminenearneighborsbyhashingthequerypointandretrievingelementsstoredinbucketscontainingthatpoint.In[21,15]theauthorsprovidedsuchlocality-sensitivehashfunctionsforthecasewhenthepointsliveinbinaryHam-mingspace1f0;1gd.Inafollowupwork[12],theauthorsintroducedLSHfunctionsthatworkdirectlyinEuclideanspaceandresultina(slightly)fasterrunningtime.ThelatteralgorithmformsthebasisofE2LSHpackage[5]forhigh-dimensionalsimilaritysearch,whichhasbeenusedinseveralappliedscenarios.Recently,[28]proposedadif-ferentmethodofutilizinglocality-sensitivehashfunctions,whichresultsinnear-linearspace,atthecostofsomewhathigherquerytime.Thenaturalquestionraisedbythislineofresearchis:whatisthesmallestexponentachievableviathelocality-sensitivehashingapproach?Itwasconjecturedbythesec-ondauthor(e.g.,in[19])that1=c2.Theconjecturewasmotivatedbythefactthatanalgorithmwithsuchexponentexistsforthecloselyrelatedproblemofndingthefurthestneighbor[20].Ourresults.Inthispaperweessentiallyresolvetheis-suebyprovidinganalgorithmwithquerytimedn(c)usingspacedn+n1+(c),where(c)=1=c2+O(loglogn=log1=3n):Thissignicantlyimprovesovertheearlierrunningtimeof[12].Inparticular,forc=2,ourexponenttendsto0:25,whiletheexponentin[12]wasaround0:45.Moreover,are-centpaper[27]showsthathashing-basedalgorithms(asde-scribedinSection2.3)cannotachieve0:462=c2.Thus,therunningtimeexponentofouralgorithmisessentiallyoptimal,uptoasmallconstantfactor.Ourresultimmediatelyimpliesimprovedalgorithmsforseveralapproximateproblemsinhighdimensionalspaces.Forexample,itisknown[21,18]thatthec-approximateminimumspanningtree(MST)problemfornpointsinld2canbecomputedbyusingO(nlogn)callstothec-approximatenearneighbororacleforthatspace.Thus,ourresultimpliesadn1+1=c2+o(1)-timealgorithmforthec-approximateMSTproblem.Otherproblemsforwhichsim-ilarimprovementisobtainedincludedynamicclosestpairandfacilitylocation[18].Unfortunately,theconvergenceoftheexponenttothe1=c2limitisratherslow.Tobemoreprecise:therunning 1Thealgorithmcanbeextendedtoothernorms,suchasl2,byusingembeddings.However,thisextensionaddsadditionalcomplexitytothealgorithm. Paper Metric Space Querytime Comments [21,15] Hamming n1+1=c dn1=c [12] Euclidean n1+0(c) dn0(c) 0(c)1=c [28] Euclidean n dn00(c) 00(c) c!2:09 here Euclidean n1+1=c2+o(1) dn1=c2+o(1) Euclidean n dnO(1=c2) Figure1.SpaceandtimeboundsforLSH-baseddatastructures.Factorspolynomialinlognand1=,aswellasanadditivetermofdninthestoragebound,areomittedforclarity.timeofthealgorithmisboundedbytheformulatO(t)n1=c2+O(logt)=t1=2wheretisaparameterchosentominimizetheexpression.ThetO(t)factorappearsduetothefactthatouralgorithmexploitscertaincongurationsofpointsinat-dimensionalspace;the“quality”ofthecongurationsincreaseswitht.Onecanobservethattheparametertneedstobesomewhatlargefortheexponenttobecompetitiveagainsttheearlierbounds.ButthenthefactortO(t)becomesverylarge,eras-ingthespeedupgainedfromtheimprovedexponent(unlessnisreallylarge).Toovercomethisdifculty,wemodifythealgorithmtomakeitefcientformoremoderatevaluesofn.Specif-ically,wereplacetheaforementionedcongurationsofpointsbyknownconstructionsof“nice”point-setsinspe-cicdimensions.Inparticular,byutilizingLeechLat-tice[26]in24dimensions,weobtainanalgorithmwithex-ponent(c)suchthat(2)0:37,whiletheleadingtermintherunningtimeisreducedtoonlyfewhundred.More-over,ifthedimensionddoesnotexceed24,theexponentisreduced2further,andweachieve(2)0:27.Theleadingtermintherunningtimeremainsthesame.Finally,weshowthattheLSHfunctionscanbeusedasin[28]todesignadatastructurewithnearly-linearspaceofO(dn+nlogO(1)n)andquerytimednO(1=c2).ThisimprovesovertheearlierboundofdnO(1=c)dueto[28].1.1TechniquesWeobtainourresultbycarefullydesigningafamilyoflocality-sensitivehashfunctionsinl2.Thestartingpointof 2Anastutereaderwillobservethatifboththedimensiondandapprox-imationfactorcarexedconstants,onecanobtainadatastructurewithconstantquerytime,essentiallyviatablelookup.However,thisapproachleadsto“big-Oh”constantsthatareexponentialinthedimension,whichdefeatsourgoalofachievingapracticalalgorithm. ourconstructionisthemethodof[12].There,apointpwasmappedinto1byusingrandomprojection.Then,theline1waspartitionedintoequal-lengthintervalsoflengthw,wherewisaparameter.Thehashfunctionforpreturnedtheindexoftheintervalcontainingtheprojectionofp.Ananalysisin[12]showedthatthequerytimeexponenthasaninterestingdependenceontheparameterw.Ifwtendstoinnity,theexponenttendsto1=c,whichyieldsnoimprovementover[21,15].However,forsmallvaluesofw,theexponentliesslightlybelow1=c.Infact,theuniqueminimumexistsforeachc.Inthispaperweutilizea”multi-dimensionalversion”oftheaforementionedapproach.Specically,werstperformrandomprojectionintot,wheretissuper-constant,butrelativelysmall(i.e.,t=o(logn)).Thenwepartitionthespacetintocells.Thehashfunctionfunctionreturnstheindexofthecellwhichcontainsprojectedpointp.Thepartitioningofthespacetissomewhatmorein-volvedthanitsone-dimensionalcounterpart.First,observethatthenaturalideaofpartitioningusingagriddoesnotwork.Thisisbecausethisprocessroughlycorrespondstohashingusingconcatenationofseveralone-dimensionalfunctions(asin[12]).SincetheLSHalgorithmsperformssuchconcatenationanyway(seePreliminaries),gridparti-tioningdoesnotresultinanyimprovement.Instead,weusethemethodof”ballpartitioning”,introducedin[9]inthecontextofembeddingsintotreemetrics(asimilartech-niquewasalsousedintheSDP-basedapproximationalgo-rithmforgraphcoloring[22]).Itsideaisasfollows.CreateasequenceofballsB1;B2:::,eachofradiusw,withcen-terschosenindependently“atrandom”.EachballBithendenesacell,containingpointsBi [jiBj.Inordertoapplythismethodinourcontext,weneedtotakecareofafewissues.First,wecannotusethemethodasgiven,sincelocatingacellcontainingagivenpointcouldtakealongtime.Instead,weshowthatonecansimulatetheaboveprocedurebyreplacingeachballbya”gridofballs”.Itisnotdifcultthentoobservethatanite(albeitexponentialint)numberofsuchgridssufcestocoverallpointsint.Thesecondandthemainissueisthechoiceofw.Again,itturnsoutthatforlargew,themethodyieldsonlytheex-ponentof1=c.Specically,itwasshownin[9]thatforanytwopointsp;q2t,theprobabilitythattheparti-tioningseparatespandqisatmostO p tkp qk=w.Thisformulacanbeshowedtobetightfortherangeofwwhereitmakessenseasalowerbound,thatis,forw=\n p tkp qk.However,aslongasthesepara-tionprobabilitydependslinearlyonthedistancebetweenpandq,theexponentisstillequalto1=c.Fortunately,amorecarefulanalysisshowsthat,asintheone-dimensionalcase,theminimumisachievedfornitew.Forthatvalueofw,theexponenttendsto1=c2asttendstoinnity.LeechLatticeLSH.Inordertoobtainamorepracticalalgorithm,weintroduceadifferentpartitioningmethodthatavoidsthetO(t)factor.Specically,weusetessellationsinducedby(randomlyshifted)Voronoidiagramsofxedt-dimensionalpointconstellationswhichhavethefollowingtwoniceproperties:Theclosestconstellationpointtoagivenpointcanbefoundefciently,andTheexponentinducedbytheconstellationisascloseto1=c2aspossible.Thepartitioningisthenimplementedbyrandomlypro-jectingthepointsintod,andusingtheVoronoidiagram.Wediscoveredthataconstellationin24dimensionsknownasLeechLattice[26]satisestheabovepropertiesquitewell.First,thenearestpointinthelatticecanbefoundbyusinga(bounded)decoderof[2]whichperformonly519oatingpointoperationsperdecodedpoint.Second,theex-ponent(c)guaranteedbythatdecoderisquiteattractive:forc=2theexponent(2)islessthan0.37.TheintuitivereasonforthatisthatLeechLatticeisa“verysymmetric”constellation,andthusitsVoronoicellsarevery“round”.Moreover,ifthedimensionddoesnotexceed24,thenwecanskipthedimensionalityreductionpart.Inthatcaseweget(2)0:27,whiletheleadingtermintherunningtimeremainsthesame.Near-linearspacealgorithm.ThisresultisachievedbypluggingournewLSHfunctionintothealgorithmof[28].Unlikethealgorithmof[21](whichusednindependenthashtables),hisalgorithmusesonlyonehashtabletostorethedatasetP.Thehashtableisthenprobedbyhash-ingnotjustthequerypointq(asin[21])butbyhashingseveralpointschosenrandomlyfromtheneighborhoodofq.Theintuitionbehindthisapproachisasfollows.Letp2Pbeapointwithindistance1fromq.IfarandomLSHfunctioncausescollisionbetweenpandqwithprob-ability1=n,thenitisplausiblethat,withconstantproba-bility3,arandomhashfunctioncausescollisionbetweenqanda“non-negligible”(say,1=n)fractionofthepointsintheunitballaroundq.Sinceqandpare“close”,itfollowsthat,withconstantprobability,arandomhashfunc-tioncausescollisionbetweenpanda“non-negligible”(al-thoughslightlysmaller)fractionoftheunitballaroundq,whichisexactlywhatthealgorithmof[28]needs.Convertingthisintuitionintoaformalproofissomewhattechnical.ThisismostlyduetothefactthatthenewLSHfunctionsaremorecomplexthantheonesfrom[12](usedin[28]),andthuswehadtoextendhisframeworktoamoregeneralsetting.Wedefertheproofstothefullversionofthispaper. 3Intheactualproof,theprobabilityis1=logO(1)n. 2.Preliminaries2.1.NotationInthispaper,weworkintheEuclideanspace.Forapointp2d,wedenotebyB(p;r)theballcenteredatpwithradiusr,andwecallB(p;r)itssurface.Foraballwithradiusrind,wecallitssurfaceareaSurd(r)anditsvolumeVold(r).WenotethatSurd=Sdrd 1andVold(r)=Sdrd d,whereSdisthesurfaceareaofaballofradiusone(see,forexample,[29],page11).Wealsoneeda(standard)boundonthevolumeofthecapofaballB(p;r).LetC(u;r)bethevolumeofthecapatdistanceufromthecenteroftheball.Alternatively,C(u;r)isthehalfofthevolumeoftheintersectionoftwoballsofradiusrwithcentersatdistance2u.Furthermore,letI(u;r)=C(u;r) Vold(r)bethecapvolumerelativetothevolumeoftheentiresphere.WecanboundI(u;r)asfollows.Lemma2.1.Foranyd2and0ur,Al p d1 u r2d 2I(u;r)1 u r2d 2Theproofisdeferredtotheappendix.WealsousethefollowingstandardfactsaboutrandomprojectionsinEuclideanspaces(forproofssee,e.g.,[21]).LetA2Mt;dbearandomprojectionfromdtot;specif-icallyeachelementofAischosenfromnormaldistributionN(0;1),multipliedbyascalingfactor1 p t.Fact2.2.Foranyvectorv2d,thevaluekAvk2=kvk2isdistributedwithprobabilitydensitytP2(xt),whereP2(x)=xt=2 1e x=2 (t=2)2t=2isthechi-squareddistributionwithtdegreesoffreedom.TheexpectationofkAvk2=kvk2isequalto1.Fact2.3.Foranyvectorv2d,PrA[kAvk-0.4;腓倀2kvk]exp[ \n(t)].Fact2.4.Foranyvectorv2dandanyconstant-0.4;腓倀10,PrA[kAvk-0.4;腓倀kvk]exp[ \n(tp )].2.2.ProblemdenitionInthispaper,wesolvethec-approximatenearneighborprobleminl2,theEuclideanspace.Denition2.5(c-approximatenearneighbor,orc-NN).GivenasetPofpointsinad-dimensionalEuclideanspaced,andparametersR-0.4;腓倀0,-0.4;腓倀0,constructadatastruc-turewhich,givenanyquerypointq,doesthefollowingwithprobability1 :ifthereexistsanR-nearneighborofqinP,itreportssomecR-nearneighborofqinP.Inthefollowing,wewillassumethatisanabsoluteconstantboundedawayfrom1.Notethattheprobabilityofsuccesscanbeampliedbybuildingandqueryingseveralinstancesofthedatastructure.Formally,anR-nearneighborofqisapointpsuchthatjjp qjj2R.NotethatwecanscaledownthecoordinatesofallpointsbyR,inwhichcaseweneedonlytosolvethec-NNproblemforR=1.Thus,wewillconsiderthatR=1fortherestofthepaper.2.3.Locality-SensitiveHashingTosolvethec-approximatenearneighbor,weusethelocality-sensitivehashingscheme(LSH).Belowwede-scribethegeneralLSHscheme,asitwasrstproposedin[21].InthispaperwereusethesameLSHscheme,butweintroduceanewfamilyoflocality-sensitivehashfunc-tions.TheLSHschemereliesonexistenceoflocality-sensitivehashfunctions.ConsiderafamilyHofhashfunctionsmap-pingdtosomeuniverseU.Denition2.6(Locality-sensitivehashing).AfamilyHiscalled(R;cR;p1;p2)-sensitiveifforanyp;q2difkp qkRthenPrH[h(q)=h(p)]p1,ifkp qkcRthenPrH[h(q)=h(p)]p2.TheLSHfunctionscanbeusedtosolvethec-NNprob-lem,asperthefollowingtheoremof[21].Let=log(1=p1) log(1=p2).Fact2.7.Givenafamilyof(1;c;p1;p2)-sensitivehashfunctionsford,whereeachfunctioncanbeevaluatedintime,onecanconstructadatastructureforc-NNwithO((d+)nlog1=p2n)querytimeandspaceO(dn+n1+).3.MainalgorithmOurnewalgorithmforc-NNusesanewfamilyofLSHfunctionsforl2,whilereusingtheLSHschemeofsection2.3.Thisnewfamilyispresentedbelow.Oncewede-scribethenewfamilyofLSHfunctions,weprovethatthequerytimeisO(n1=c2+o(1))byshowingthatL=n=O(n1=c2+o(1)),k=O(logn),andthat=O(dno(1)).3.1.LSHFamilyforl2Werstdescribean“ideal”LSHfamilyforl2.Althoughthisapproachhassomedeciencies,weshowhowtoover-comethem,andobtainagoodfamilyofLSHfunctions.The naldescriptionoftheLSHfamilyispresentedinthegure2.IdealLSHfamily.Constructahashfunction~hasfol-lows.ConsiderGd,aregularinnitegridofballsind:eachballhasradiuswandhasthecenterat4w d.LetGdu,forpositiveintegeru,bethegridGdshifteduni-formlyatrandom;inotherwords,Gdu=Gd+su,wheresu2[0;4w]d.NowwechooseasmanyGdu'sasareneededtocovertheentirespaced(i.e.,untileachpointfromdbelongstoatleastoneoftheballs).SupposeweneedUsuchgridstocovertheentirespacewithhighprobability.Wedene~honapointpasatuple(u;x1;x2;:::xd),u2[1;U]and(x1;:::xd)2Gdu.Thetuple(u;x1;x2;:::xd)speciestheballwhichcontainsthepointp:p2B((x1;x2;:::xn);w).Ifthereareseveralballsthatcontainp,thenwetaketheonewiththesmallestvalueu.Comput-ing~h(p)canbedonein=O(U)time:weiteratethroughallGd1;Gd2;:::GdU,andndtherstGdusuchthatpisinsideaballwiththecenterfromGdu.Intuitively,thisfamilysatisesourlocality-sensitivedef-inition:thecloserarethepointsp;q,thehigheristheprobabilitythatp;qbelongtothesameball.Indeed,ifwechooseasuitableradiusw1=2,thenwewillgetL=n=O(n1=c2+o(1)).However,thedeciencyofthisfamilyisthatthetimetocompute~h(p)mightbetoolargeifd=\n(logn)sinceweneedtosetU=\n(2d)(seelemma3.1).Weshowhowtocircumventthisdeciencynext.ActualLSHfamily.Ouractualconstructionutilizesthe“ideal”familydescribedabove,whileintroducinganad-ditionalstep,necessarytoreduceU,thenumberofgridscoveringthespace.ThealgorithmisgiveninFigure2.ToreduceU,weprojectdtoalower-dimensionalspacetviaarandomdimensionalityreduction.Thepa-rametertiso(logn),suchthatfactorsexponentialintareo(n).Afterperformingtheprojection,wechoosethegridsGt1;Gt2;:::GtUinthelower-dimensionalspacet.Now,tocomputeh(p),wecomputetheprojectionofpontothelowerdimensionalspacet,andprocessthepro-jectedpointasdescribedearlier.Inshort,theactualhashfunctionish(p)=~h(Ap),whereAisarandommatrixrepresentingthedimensionalityreductionmapping,and~hworksinthet-dimensionalspace.Notethatbecomes=O(dt)+O(Ut)correspondingtotheprojectionandthebucket-computationstagesrespectively.3.2.AnalysisoftheLSHfamilyWestartbyboundingthenumberofgridsGdneededtocovertheentirespaced,foranydimensiond.Lemma3.1.Considerad-dimensionalspaced.LetGdbearegularinnitegridofballsofradiuswplacedatco-ordinateswd,where2dO(1).DeneGdu,for Initializationofahashfunctionh2H1.Foru=1toU,choosearandomshiftsu2[0;4w]t,whichspeciesthegridGtu=Gt+suinthet-dimensionalEu-clideanspace.2.ChooseamatrixA2Mt;d,whereeachelementAijisdis-tributedaccordingtothenormaldistributionN(0;1)timesascalingfactor,1 p t.ThematrixArepresentsarandomprojec-tionfromtot.Computingh()onapointp21.Letp0=Apbetheprojectionofthepointpontothet-dimensionalsubspacegivenbyA.2.Foreachu=1;2;:::U3.CheckwhetherB(p0;w)\Gtu=;,i.e.,whetherthereexistsome(x1;x2;:::xt)2Gtusuchthatp2B((x1;x2;:::xt);w).4.Oncewendsuch(x1;x2;:::xt),seth(p)=(u;x1;x2;:::xt),andstop.5.Return0t+1ifwedonotndanysuchball. Figure2.AlgorithmsforinitializingahashfunctionhfromtheLSHhashfamily,andforcomputingh(p)forapointp2d.positiveintegeru,asGdu=Gd+su,wheresu2[0;w]disarandomshiftofthegridGd.IfUd=2O(dlogd)logn,then,thegridsGd1;Gd2;:::GdUdcovertheentirespaced,w.h.p.Proof.First,observethattheentirespaceiscoveredifandonlyifthehypercube[0;w]discoveredbygridsGdu(duetotheregularityofthegrids).Toprovethat[0;w]discovered,wepartitionthehy-percube[0;w]dintosmaller“micro-cubes”andprovethateachofthemiscoveredwithahighenoughprobabil-ity.Specically,wepartitionthehypercube[0;w]dintosmallermicro-cubes,eachofsizew p dw p dw p d.ThereareN=(w)d (w=p d)d=(p d)dsuchmicro-cubesintotal.Letxbetheprobabilitythatamicro-cubeiscoveredbyonegridGdu.Thenx(w=p d)d (w)d=1=Nbecause,foramicro-cubetobecovered,itsufcesthatthecenteroftheballB(0d+su;w)fallsinsidethemicro-cube,whichhappenswithprobability1=N.Furthermore,ifxUistheprobabilitythatamicro-cubeiscoveredbyanyoftheUdgridsGdu,thenxU1 (1 x)Ud.Thus,wecancomputetheprobabilitythatthereexistsatleastoneuncoveredmicro-cube,whichisalsotheprob-abilitythattheentire[0;w]dhypercubeisuncovered.SetUd=aN(logn+logN)forasuitableconstanta.Usingunionbound,weobtainthattheprobabilitythattheentire hypercubeisnotcoveredisatmostN(1 x)UdN(1 1=N)UdN(1 1=N)aN(logn+logN)N2 logn logN1=nConcluding:withprobabilityatleast1 1=nwecovertheentirespacewiththegridsGd1;:::GdUd,ifwechooseUd=O(N(logn+logN))=2O(dlogd)logn. Thenextlemmastatesthemaintechnicalresultofthispaper.Lemma3.2.Considerthehashfunctionhdescribedinthegure2,andletp;qbesomepointsind.Letp1betheprobabilitythath(p)=h(q)giventhatjjp qjj1,andletp2betheprobabilitythath(p)=h(q)giventhatjjp qjjc.Then,forw= 4p t,weobtain=log1=p1 log1=p2=1=c2+Ologt t1=2.Proof.Theproofproceedsinthreestages.Fixsomepointsp;q2datdistance.Firstwecomputetheprobabilityofcollisionofpandqgiventhattheirdistanceaftertheprojectionisequaltosomexedvalue0.Next,foreachofthecaseswhen1andc,wecomputethecollisionprobabilities(p1andp2,resp.)byintegratingovertherangeofthepossible(distorted)distances0.Finally,giventheboundsonp1andp2,wecomputethevalueof=log1=p1 log1=p2.Supposepointspandqareprojectedunderthedimen-sionalityreductionintopointsp0=Apandq0=Aq,p0;q02t,with0=kp0 q0k;theprobabilityofcol-lisionofpandqcanbededucedasfollows.ConsiderthesequenceofgridsGt1;Gt2;:::;GtU,andletGtubetherstgridsuchthatp0orq0areinsideaballB(x;w)withcenterinGtu.Notethatthepositionofthisballdeneswhetherh(p)=h(q)ornot.Inparticular,ifp0;q02B(x;w)thenh(p)=h(q)and,otherwise,ifexactlyoneofp0;q0isinsideB(x;w)thenh(p)=h(q).Thus,wecanconcludethattheprobabilityofcollisionofpointsp;qisPr[h(p)=h(q)jkp0 q0k=0]=Pr[p0;q02B(x;w)jp02B(x;w)_q02B(x;w)]=jB(p0;w)\B(q0;w)j jB(p0;w)[B(q0;w)j=2C(0=2;w) 2Volt(w) 2C(0=2;w)=I(0=2;w) 1 I(0=2;w)(1)whereC(0=2;w)andI(0=2;w)arerespectivelythecapvolumeandtherelativecapvolume,asdenedinthepreliminaries.Inthenextstepweboundp2.Thisisdonebyintegratingthecollisionprobabilityoverallpossiblevaluesof0,i.e.,overalldistortionsofkp qk.Asnotedinfact2.2,thedistortionofkp qk2isdistributedwithprobabilitydensityP2.p2=1R0Pr[h(p)=h(q)jkp0 q0k=p x tc]P2(x)dxR0p x tc2wP2(x)I(1 2p x tc;w) 1 I(1 2p x tc;w)dx1R0P2(x)2I 1 2p x tc;wdx21R0P2(x) 1 1 2p x tc w2!t 2dx21R0P2(x)exph t 2xc2 4w2tidx=21R0P2(x)exph 1 2xc2 4w2idxwhere,forthethirdinequality,weusedlemma2.1.Set-ting=1 4w2,andreplacingtheexpressionforP2,weobtainp221R0xt=2 1 (t=2)2t=2exp x 2exph xc2 2idx=21R0(x(1+c2))t=2 1 (1+c2)t=2 1 (t=2)2t=2exph x(1+c2) 2idx=2 (1+c2)t=21R0P2(x(1+c2))d(x(1+c2))=2 (1+c2)t=2(2)Weboundp1frombelowinasimilarwayp1R0p x t2wP2(x)I(1 2p x t;w) 1 I(1 2p x t;w)dx4w2tR0P2(x)I(1 2p x t;w)dxt=R0P2(x)Al p t 1 1 2p x t w2!t 2dx=Al p tt=R0P2(x) 1 x tt 2dx=Al p tt=R0P2(x)1 1+x=t 1 x=tt 2dxAl p tt=R0P2(x)exph t 2x=t 1 x=tidxAl p t4tR0P2(x)exp t 2x t(1+8)dxAl p t1R0P2(x)exp x 2(1+8)dx 1R4tP2(x)dx(3)NotethatthetermR14tP2(x)dxrepresentstheproba-bilityofexpansionbymorethanafactorof2,whichisatmostexp[ \n(t)]byfact2.3.Furthermore,replacingthe expressionforP2,weobtainp1Al p t1R0P2(x)exp x 2(1+8)dx e \n(t)Al p t1R0xt 2 1 (t 2)2t 2e x=2exp x 2(1+8)dx e \n(t)=Al p t1R0(x(1+(1+8)))t 2 1 (1+(1+8))t 2 1 (t 2)2t 2exph x(1+(1+8)) 2idx e \n(t)=Al p t1 (1+(1+8))t=2 e \n(t)(4)For=1=4w2=o(1),weobtainp1Al 2p t1 (1++82)t=2.Finally,wecanboundasfollows:=log1=p1 log1=p2log2p t Al(1+(1+8))t=2 log1 2(1+c2)t=2=log(1+(1+8))t=2+log2p t Al log(1+c2)t=2 log2=log(1+(1+8))+2log2p t=Al t log(1+c2) 2log2 tlog(1+(1+8)) log(1+c2)1+2log2p t=Al tlog(1+(1+8))1+O2log2 tlog(1+c2)(1+8) c2 (c2)2=21+Ologt tlog(1+)1 c2(1+8) 1+O(c2=2)1+Ologt t1 c21+O+w2logt t1 c21+Ologt t1=2(5)forw=4p t,whichalsoimplies=O(t 1=2)=o(1). Theorem3.3.Thereexistsanalgorithmsolvingc-NNprob-leminld2thatachievesO(dn1=c2+o(1))querytimeandO(dn1+1=c2+o(1))spaceandpreprocessing.Proof.TheresultfollowsbyusingtheLSHfamilying-ure2withthegeneralLSHschemedescribedinsection2.3.Bylemma3.2,fort=log2=3n,wehave=1=c2+Ologlogn log1=3n.Furthermore,kcanbeboundedas(usingeqn.(2))k=logn log1=p2logn log(1+c2=4w2)t=2=2=Ologn t=w2 O(1)=O(logn)Finally,bylemma3.1for=4,=O(dt)+O(Ut)=O(dt)+O 2tlogtlogn=O(dt)+2O(log2=3nloglogn)logn=O(dno(1)).Thetheoremfol-lows. 4.AcknowledgmentsTheauthorswouldliketothankAssafNaorforstimu-latingdiscussionsabouttheballpartitioningmethod.Also,theythankOferAmraniforsupplyingtheboundeddistancedecodercode,andtoAlexVardyandErikAgrellforan-sweringnumerousquestionsaboutLeechLatticedecoders.References[1]N.AilonandB.Chazelle.Approximatenearestneighborsandthefastjohnson-lindenstrausstransform.ProceedingsoftheSymposiumonTheoryofComputing,2006.[2]O.AmraniandY.Be'ery.Efcientbounded-distancedecod-ingofthehexacodeandassociateddecodersfortheleechlatticeandthegolaycode.IEEETransactionsonCommuni-cations,44:534–537,May1996.[3]O.Amrani,Y.Be'ery,A.Vardy,F.-W.Sun,andH.C.A.vanTilborg.Theleechlatticeandthegolaycode:Bounded-distancedecodingandmultilevelconstructions.IEEETrans-actionsonInformationTheory,40:1030–1043,July1994.[4]A.Andoni,M.Datar,N.Immorlica,P.Indyk,andV.Mir-rokni.Locality-sensitivehashingschemebasedonp-stabledistributions.NearestNeighborMethodsforLearningandVision,NeuralProcessingInformationSeries,MITPress,2005.[5]A.AndoniandP.Indyk.E2lsh:Exacteuclideanlocality-sensitivehashing.Implementationavailableathttp://web.mit.edu/andoni/www/LSH/index.html,2004.[6]A.Andoni,P.Indyk,andM.Patras¸cu.Ontheoptimalityofthedimensionalityreductionmethod.Manuscript,2006.[7]S.Arya,D.Mount,N.Netanyahu,R.Silverman,andA.Wu.Anoptimalalgorithmforapproximatenearestneighborsearching.ProceedingsoftheFifthAnnualACM-SIAMSym-posiumonDiscreteAlgorithms,pages573–582,1994.[8]A.ChakrabartiandO.Regev.Anoptimalrandomisedcellprobelowerboundsforapproximatenearestneighborsearching.ProceedingsoftheSymposiumonFoundationsofComputerScience,2004.[9]M.Charikar,C.Chekuri,A.Goel,S.Guha,andS.Plotkin.Approximatinganitemetricbyasmallnumberoftreemet-rics.ProceedingsoftheSymposiumonFoundationsofCom-puterScience,1998.[10]J.H.ConwayandJ.A.Sloane.Softdecodingtechniquesforcodesandlattices,includingthegolaycodeandtheleechlattice.IEEETrans.Inf.Theor.,32(1):41–50,1986.[11]J.H.ConwayandJ.A.Sloane.SpherePackings,Lattices,andGroups.Springer-Verlag,NewYork,1993.[12]M.Datar,N.Immorlica,P.Indyk,andV.Mirrokni.Locality-sensitivehashingschemebasedonp-stabledistributions.ProceedingsoftheACMSymposiumonComputationalGe-ometry,2004.[13]U.FeigeandG.Schechtman.Ontheoptimalityoftheran-domhyperplaneroundingtechniqueformaxcut.RandomStruct.Algorithms,20(3):403–440,2002. [14]G.ForneyandA.Vardy.Generalizedminimumdistancede-codingofeuclidean-spacecodesandlattices.IEEETrans-actionsonInformationTheory,42:1992–2026,November1996.[15]A.Gionis,P.Indyk,andR.Motwani.Similaritysearchinhighdimensionsviahashing.Proceedingsofthe25thIn-ternationalConferenceonVeryLargeDataBases(VLDB),1999.[16]S.Har-Peled.Areplacementforvoronoidiagramsofnearlinearsize.ProceedingsoftheSymposiumonFoundationsofComputerScience,2001.[17]S.Har-PeledandS.Mazumdar.Coresetsfork-meansandk-mediansandtheirapplications.ProceedingsoftheSym-posiumonTheoryofComputing,2004.[18]P.Indyk.High-dimensionalcomputationalgeometry.De-partmentofComputerScience,StanfordUniversity,2001.[19]P.Indyk.Approximatealgorithmsforhigh-dimensionalgeometricproblems.InvitedtalkatDIMACSWork-shoponComputationalGeometry.Availableathttp://theory.csail.mit.edu/˜indyk/high.ps,2002.[20]P.Indyk.Betteralgorithmsforhigh-dimensionalproximityproblemsviaasymmetricembeddings.ProceedingsoftheACM-SIAMSymposiumonDiscreteAlgorithms,2003.[21]P.IndykandR.Motwani.Approximatenearestneighbor:towardsremovingthecurseofdimensionality.ProceedingsoftheSymposiumonTheoryofComputing,1998.[22]D.Karger,R.Motwani,andM.Sudan.Approximategraphcoloringbysemideniteprogramming.Proceedingsofthe35thIEEESymposiumonFoundationsofComputerScience,pages2–13,1994.[23]J.Kleinberg.Twoalgorithmsfornearest-neighborsearchinhighdimensions.ProceedingsoftheTwenty-NinthAnnualACMSymposiumonTheoryofComputing,1997.[24]R.KrauthgamerandJ.R.Lee.Navigatingnets:Simpleal-gorithmsforproximitysearch.ProceedingsoftheACM-SIAMSymposiumonDiscreteAlgorithms,2004.[25]E.Kushilevitz,R.Ostrovsky,andY.Rabani.Efcientsearchforapproximatenearestneighborinhighdimensionalspaces.ProceedingsoftheThirtiethACMSymposiumonTheoryofComputing,pages614–623,1998.[26]J.Leech.Notesonspherepackings.CanadianJournalofMathematics,1967.[27]R.Motwani,A.Naor,andR.Panigrahy.Lowerboundsonlocalitysensitivehashing.ProceedingsoftheACMSympo-siumonComputationalGeometry,2006.[28]R.Panigrahy.Entropy-basednearestneighboralgorithminhighdimensions.ProceedingsoftheACM-SIAMSympo-siumonDiscreteAlgorithms,2006.[29]G.Pisier.ThevolumeofconvexbodiesandBanachspacegeometry.CambridgeUniversityPress,1989.[30]H.Samet.FoundationsofMultidimensionalandMetricDataStructures.Elsevier,2006.[31]G.Shakhnarovich,T.Darrell,andP.Indyk,editors.NearestNeighborMethodsinLearningandVision.NeuralProcess-ingInformationSeries,MITPress,2006.[32]A.VardyandY.Be'ery.Maximum-likelihooddecodingoftheleechlattice.IEEETransactionsonInformationTheory,39:1435–1444,July1993.A.CapofthesphereProof.Theresultfollowsimmediatelyfromthelemma9of[13],whichgivesboundsontheratioofthesurfaceareasofthecaptothatoftheball.Specically,notethatI(u;r)hasthefollowingformI(u;r)=C(u;r)(Vold(r)) 1=rRuSd 1 d 1(r2 y2)d 1 2dy Sd drd 1=d d 1rRuSd 1(r2 y2)d 1 2dy Sdrd 1ThequantityRruSd 1(r2 y2)d 1 2dy Sdrd 1rep-resentspreciselytheratioofthesurfaceareaofthecapC(u;r)(excludingthebase)tothesurfaceareaofaballofradiusrinthe(d+1)-dimensionalspace.Thisratioisbounded[13]asAl p d+11 u r2d 2rZuSd 1(r2 y2)d 1 2dy Sdrt 11 21 u r2d 2Thus,multiplyingtheaboveboundsbyd d 1,weobtainthatd d 1Al p d+11 u r2d 2I(u;r)d d 11 21 u r2d 2whichimpliesthelemma. B.Lattice-basedLSHfamilyInthissectionwedescribeapracticalvariantoftheLSHfamilybasedonlatticesinEuclideanspaces.Although,the-oretically,thesefamiliesarenotasymptoticallybetterthantheonesdescribedearlier,theyarelikelytoperformbetterinpractice,duetomuchlower“big-Oh”constants.Westartbypresentingthegenerallattice-basedap-proach.Then,wegiveanalgorithmbasedonaconcrete24-dimensionallattice,calledLeechLattice[26].FortheLeechlattice-basedalgorithm,weincludetheactualvaluesoftheresultingexponent,themainindicatoroftheper-formance.B.1.LatticesinarbitrarydimensionThealgorithminthissectionusesanarbitrarylatticeinsomet-dimensionalspace.Anexampleofat-dimensional latticeistheregulargridofpointsint,although,asmen-tionedintheintroduction,itdoesnotservewellourpur-poses.Foragivenlattice,weneedanefcientlatticedecod-ingfunction,towhichwereferasLATTICEDECODE(x).ThefunctionLATTICEDECODE(x)takesasinputapointx2tandreturnsthelatticepointthatistheclosesttox.GivenaspeciclatticewithadecodingfunctionLATTICEDECODE(x),anLSHfunctionisconstructedasfollows(formallypresentedingureB.1).First,ifd-0.4;腓倀t,wechoosearandomprojectionfromd-dimensionalspacetot-dimensionalspace,whichwerepresentasamatrixAofdimensiontd.Ifdt,then,instead,wechoosearandomrotationinthet-dimensionalspace,whichwealsorepresentasamatrixAofdimensiontd(here,Aisequaltotherstdcolumnsofanrandomortonormalmatrixofdimensiontt).Finally,wechoosearandomtranslationinthet-dimensionalspace,whichwerepresentasavectorTofdimensiont1.ThevaluesofA;TidentifyanLSHfunction.ForanLSHfunctionhspeciedbyvaluesofAandT,wedeneh(p)asbeingh(p)=LATTICEDECODE(Ap+T).Or,inwords,forp2d,werstprojectpintotusingA(orrotateitifdt);then,wetranslatetheprojec-tionusingT;and,nally,wendtheclosestpointinlatticeusingLATTICEDECODE.TheoutputofLATTICEDECODEgivesthevalueofh(p). Initializationofahashfunctionh2H1.Ifdt,choosearandomprojectionfromd-dimensionalspacetot-dimensionalspace.TheprojectionisrepresentedbyamatrixA2Mt;d,whereeachelementAijisdistributedaccordingtothenormaldistributionN(0;1)timesascalingfactor,1 p t.2.Ifdt,choosearandomrotationinthet-dimensionalspace.TherotationisrepresentedbythematrixA,whichisequaltotherstdcoordinatesofanttortonormalmatrix.3.Choosearandomtranslationinthet-dimensionalspace.ThetranslationisrepresentedbyavectorT2Mt;1.Computingh()onapointp21.Letx=Ap+T.2.ReturnLATTICEDECODE(x). Figure3.AlgorithmsforinitializinganLSHfunctionhandforcomputingh(p)forapointp2d.TheperformanceoftheresultingLSHschemedependsheavilyonthechoiceofthelattice.Intuitively,wewouldlikealatticethatlivesintforhight,is“dense”4,andhas 4Ameasureof“density”is,forexample,thedensityofhyperspherepackinginducedbythelattice.Thedensityofhyperspherepackingisthepercentofthespacethatiscoveredbynon-overlappingballscenteredatlatticepoints.afastdecodingfunctionLATTICEDECODE.Withahighert,thedimensionalityreductionismoreaccurate.A“denser”latticegivesasharperdifferenceincollisionprobabilitiesofcloseandfarpoints.B.2.LeechLatticeInthissection,wefocusonaparticularlatticein24di-mensionalspace,theLeechLattice[26].WegivenumericalvaluesforthewhenweusetheLeechLatticeinthealgo-rithmB.1withaspecicdecoderdescribedbelow.TheLeechLatticehasbeenstudiedextensively(see,e.g.,[11,10,2,32,14])andisknowntobethelat-ticethatgivesthedensest(lattice)hyperspherepackingin24dimensions.Below,wedenotetheLeechLat-ticeby24andcallthecorrespondingdecodingfunctionLATTICEDECODE24(x).SeveralefcientdecodersfortheLeechLatticeareknown;thebestofthem[32]requires3595oatingpointoperationstodecodeonepoint.How-ever,evenfasterdecodersareknown(e.g.,see[3,2,14])forthebounded-distancedecodingproblem.Abounded-distancedecoderguaranteestoreturnthecorrectresultonlywhenthequerypointxissufcientlyclosetooneofthelatticepoints;otherwisethedecodergivesnoguarantees.Notethatabounded-distancedecoderyieldsanLSHfunc-tion,albeitnotnecessarilyasgoodastheperfectdecoder.Wehaveinvestigatedthebounded-distancedecoderof[2],whichwecallLATTICEDECODEB24(x).Theirimple-mentationusesatmost519realoperationsperdecodedpoint.Forthatdecoder,wecomputedthevaluesofthere-sultingcollisionprobabilities(forthecased24).There-sultsaredepictedinTable1.TheprobabilitiesarecomputedusingMonte-Carlosimulationwith107trials.Specically,inatrial,wegeneratearandompointpandsomeotherpointq,suchthatp qisdrawnfroma24-dimensionalGaussiandistribution,scaledby1 p 24timestheradius.ThepointspandqcollideiffLATTICEDECODEB24(p)=LATTICEDECODEB24(q).Table1summarizestheesti-matedprobabilitiesofcollisionfordifferentvaluesofradii(thecondenceintervalsarecomputedwith95%accuracy).TheseprobabilitiesyieldvaluesforthataresummarizedinTable2.Thetableshowsmaximumlikelihoodandcon-servative.Themaxlikehoodistheratioofcorrespond-ingmaxlikehoodvaluesofp1andp2(fromthemiddlecol-umn).Theconservativeistheratiooflowestestimateofp1fromthecondenceintervaltothehighestestimateofp2inthecondenceinterval.Forthecasewhend24,thecollisionprobabilitiesaresummarizedintable3.Themethodforcomputingtheprobabilitiesisasbefore,exceptforthegenerationofthepointq.Inthiscase,thevectorq pisarandomvectorofxedlength.TheresultingvaluesofaresummarizedinTable4. Radius Est.collisionprob. Condenceinterval 0.7 0.0853465 [0.0853409,0.0853521] 0.8 0.0525858 [0.0525813,0.0525903] 0.9 0.0311720 [0.0311685,0.0311755] 1.0 0.0177896 [0.0177869,0.0177923] 1.1 0.0097459 [0.0097439,0.0097479] 1.2 0.0051508 [0.0051493,0.0051523] 1.3 0.0026622 [0.0026611,0.0026633] 1.4 0.0013332 [0.0013324,0.0013340] 1.5 0.0006675 [0.0006670,0.0006681] 1.6 0.0003269 [0.0003265,0.0003273] 1.7 0.0001550 [0.0001547,0.0001553] 1.8 0.0000771 [0.0000769,0.0000773] 1.9 0.0000368 [0.0000366,0.0000370] 2.0 0.0000156 [0.0000155,0.0000157] Table1.Probabilitiesofcollisionoftwopoints,ford24,underthehashfunc-tiondescribedingureB.1withbounded-distanceLeechLatticedecoder.ThevalueswereobtainedthroughMonte-Carlosimula-tionfor107trials.Condenceintervalcorre-spondsto95%accuracy. c Maxlikelihoodof Conservative RadiusR 1.5 0.5563 0.5565 1.2 2.0 0.3641 0.3643 1.0 Table2.Thevaluesof=logp1 logp2correspond-ingtothecollisionprobabilitiesinTable1(d24).Probabilitiesp1andp2arethecol-lisionprobabilitiescorrespondingtoradiiRandcR,respectively. Radius Est.collisionprob. Condenceinterval 0.7 0.0744600 [0.0744548,0.0744653] 0.8 0.0424745 [0.0424705,0.0424786] 0.9 0.0223114 [0.0223084,0.0223144] 1.0 0.0107606 [0.0107585,0.0107627] 1.1 0.0046653 [0.0046639,0.0046667] 1.2 0.0017847 [0.0017838,0.0017856] 1.3 0.0005885 [0.0005880,0.0005890] 1.4 0.0001602 [0.0001599,0.0001605] 1.5 0.0000338 [0.0000337,0.0000340] 1.6 0.0000073 [0.0000072,0.0000074] 1.7 0.0000009 [0.0000008,0.0000010] 1.8 0.0000000 [0.0000000,0.0000001] Table3.Probabilitiesofcollisionoftwopoints,ford24,underthehashfunctionde-scribedingureB.1withbounded-distanceLeechdecoder.ThevalueswereobtainedthroughMonte-Carlosimulationfor107trials.Condenceintervalcorrespondsto95%ac-curacy. c Maxlikelihoodof Conservative RadiusR 1.5 0.4402 0.4405 1 2.0 0.2671 0.2674 0.8 Table4.Thevaluesof=logp1 logp2correspond-ingtothecollisionprobabilitiesintable1(d24).Probabilitiesp1andp2arethecol-lisionprobabilitiescorrespondingtoradiiRandcRrespectively.
© 2021 docslides.com Inc.
All rights reserved.