/
On the Power of Belief Propagation: On the Power of Belief Propagation:

On the Power of Belief Propagation: - PowerPoint Presentation

yoshiko-marsland
yoshiko-marsland . @yoshiko-marsland
Follow
349 views
Uploaded On 2018-11-04

On the Power of Belief Propagation: - PPT Presentation

A Constraint Propagation Perspective Rina Dechter Bozhena Bidyuk Robert Mateescu Emma Rollon Distributed Belief Propagation Distributed Belief Propagation 1 2 3 4 4 3 2 1 5 5 5 ID: 714242

belief ibp propagation beliefs ibp belief beliefs propagation determinism network error iteration inference arc consistency variables nets converges distributed

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "On the Power of Belief Propagation:" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

On the Power of Belief Propagation:A Constraint Propagation Perspective

Rina Dechter

Bozhena

Bidyuk

Robert

Mateescu

Emma

RollonSlide2

Distributed Belief PropagationSlide3

Distributed Belief Propagation

1

2

3

4

4

3

2

1

5

5

5

5

5

How many people?Slide4

Distributed Belief Propagation

Causal support

Diagnostic supportSlide5

Belief Propagation in PolytreesSlide6

BP on Loopy GraphsPearl (1988): use of BP to loopy networksMcEliece

, et. Al 1988: IBP’s success on coding networks Lots of research into convergence … and accuracy (?), but:Why IBP works well for coding networksCan we characterize other good problem classesCan we have any guarantees on accuracy (even if converges)Slide7

Arc-consistencySound Incomplete Always converges

(polynomial)A

B

C

D

3

21A

3

2

1

B

3

2

1

D

3

2

1

C

<

<

<

=

A < B

1

2

2

3

A < D

1

2

2

3

D < C

1

2

2

3

B = C

1

1

2

2

3

3Slide8

A

AB

AC

AB

D

BCFDFG

B4

5

3

6

2

B

D

F

A

A

A

C

1

A

P(A)

1

.2

2

.5

3

.3

0

A

B

P(B|A)

1

2

.3

1

3

.7

2

1

.4

2

3

.6

3

1

.1

3

2

.9

0

A

B

D

P(D|A,B)

1

2

3

1

1

3

2

1

2

1

3

1

2

3

1

1

3

1

2

1

3

2

1

1

0

D

F

G

P(G|D,F)

1

2

3

1

2

1

3

1

0

B

C

F

P(F|B,C)

1

2

3

1

3

2

1

1

0

A

C

P(C|A)

1

2

1

3

2

1

0

A

1

2

3

A

B

1

2

1

3

2

1

2

3

3

1

3

2

A

B

D

1

2

3

1

3

2

2

1

3

2

3

1

3

1

2

3

2

1

D

F

G

1

2

3

2

1

3

B

C

F

1

2

3

3

2

1

A

C

1

2

3

2

A

A

B

A

C

AB

D

BCF

DFG

B

4

5

3

6

2

B

D

F

A

A

A

C

1

Belief network

Flat constraint network

Flattening the Bayesian NetworkSlide9

A

B

P(B|A)

1

2

>0

1

3

>0

2

1

>0

2

3

>0

3

1

>0

3

2

>0

0

A

B

1

2

1

3

2

1

2

3

3

1

3

2

A

h

1

2

(A)

1

>0

2

>0

3

>0

0

B

h

1

2

(B)

1

>0

2

>0

3

>0

0

B

h

1

2

(B)

1

>0

3

>0

0

A

1

2

3

B

1

2

3

B

1

3

Updated belief:

Updated relation:

A

B

Bel

(A,B)

1

3

>0

2

1

>0

2

3

>0

3

1

>0

0

A

B

1

3

2

1

2

3

3

1

A

AB

AC

ABD

BCF

DFG

B

4

5

3

6

2

B

D

F

A

A

A

C

1

Belief Zero Propagation = Arc-ConsistencySlide10

A

P(A)

1

.2

2

.5

3

.3

0

A

C

P(C|A)

1

2

1

3

2

1

0

A

B

P(B|A)

1

2

.3

1

3

.7

2

1

.4

2

3

.6

3

1

.1

3

2

.9

0

B

C

F

P(F|B,C)

1

2

3

1

3

2

1

1

0

A

B

D

P(D|A,B)

1

2

3

1

1

3

2

1

2

1

3

1

2

3

1

1

3

1

2

1

3

2

1

1

0

D

F

G

P(G|D,F)

1

2

3

1

2

1

3

1

0

A

A

B

A

C

AB

D

BC

F

DF

G

B

4

5

3

6

2

B

D

F

A

A

A

C

1

Flat Network - ExampleSlide11

A

P(A)

1

>0

3

>0

0

A

C

P(C|A)

1

2

1

3

2

1

0

A

B

P(B|A)

1

3

1

2

1

>0

2

3

>0

3

1

1

0

B

C

F

P(F|B,C)

1

2

3

1

3

2

1

1

0

A

B

D

P(D|A,B)

1

3

2

1

2

3

1

1

3

1

2

1

3

2

1

1

0

D

F

G

P(G|D,F)

2

1

3

1

0

A

A

B

A

C

AB

D

BC

F

DF

G

B

4

5

3

6

2

B

D

F

A

A

A

C

1

IBP Example – Iteration 1Slide12

A

P(A)

1

>0

3

>0

0

A

C

P(C|A)

1

2

1

3

2

1

0

A

B

P(B|A)

1

3

1

3

1

1

0

B

C

F

P(F|B,C)

3

2

1

1

0

A

B

D

P(D|A,B)

1

3

2

1

3

1

2

1

0

D

F

G

P(G|D,F)

2

1

3

1

0

A

A

B

A

C

AB

D

BC

F

DF

G

B

4

5

3

6

2

B

D

F

A

A

A

C

1

IBP Example – Iteration 2Slide13

A

P(A)

1

>0

3

>0

0

A

C

P(C|A)

1

2

1

3

2

1

0

A

B

P(B|A)

1

3

1

0

B

C

F

P(F|B,C)

3

2

1

1

0

A

B

D

P(D|A,B)

1

3

2

1

3

1

2

1

0

D

F

G

P(G|D,F)

2

1

3

1

0

A

A

B

A

C

AB

D

BC

F

DF

G

B

4

5

3

6

2

B

D

F

A

A

A

C

1

IBP Example – Iteration 3Slide14

A

P(A)

1

1

0

A

C

P(C|A)

1

2

1

3

2

1

0

A

B

P(B|A)

1

3

1

0

B

C

F

P(F|B,C)

3

2

1

1

0

A

B

D

P(D|A,B)

1

3

2

1

0

D

F

G

P(G|D,F)

2

1

3

1

0

IBP Example – Iteration 4

A

A

B

A

C

AB

D

BC

F

DF

G

B

4

5

3

6

2

B

D

F

A

A

A

C

1Slide15

A

P(A)

1

1

0

A

C

P(C|A)

1

2

1

0

A

B

P(B|A)

1

3

1

0

B

C

F

P(F|B,C)

3

2

1

1

0

A

B

D

P(D|A,B)

1

3

2

1

0

D

F

G

P(G|D,F)

2

1

3

1

0

A

B

C

D

F

G

Belief

1

3

2

2

1

3

1

0

IBP Example – Iteration 5

A

A

B

A

C

AB

D

BC

F

DF

G

B

4

5

3

6

2

B

D

F

A

A

A

C

1Slide16

IBP – Inference Power for Zero Beliefs

Theorem: Iterative BP performs arc-consistency on the flat network. Soundness:

Inference of zero beliefs by IBP convergesAll the inferred zero beliefs are

correctIncompleteness:

Iterative BP is as weak and as strong as arc-consistency

Continuity Hypothesis: IBP is sound for zero - IBP is accurate for extreme beliefs? Tested empiricallySlide17

Experimental ResultsAlgorithms:IBPIJGP

Measures:Exact/IJGP histogramRecall absolute error

Precision absolute error

Network types:

Coding

Linkage analysis*Grids*Two-layer noisy-OR*CPCS54, CPCS360We investigated empirically if the results for zero beliefs extend to ε-small beliefs (ε > 0)* Instances from the UAI08 competition

Have determinism?YESNOSlide18

Networks with Determinism: Coding

N=200, 1000 instances, w*=15Slide19

Nets w/o Determinism: bn2o

w* = 24w* = 27

w* = 26Slide20

Nets

with Determinism: LinkagePercentage

Absolute Error

pedigree1, w* = 21

Exact Histogram IJGP Histogram Recall Abs. Error Precision Abs. Error

Percentage

Absolute Error

pedigree37, w* = 30

i-bound = 3

i-bound = 7Slide21

Nets with Determinism: Grids

(size, % determinism) =, w* = 22Slide22

Nets w/o Determinism: cpcs

CPCS360: 5 instances, w*=20 CPCS54: 100 instances, w*=15Slide23

The Cutset Phenomena & irrelevant nodesObserved variables break the flow of inference IBP is exact when evidence variables form a cycle-

cutsetUnobserved variables without observed descendents send zero-information to the parent variables – it is irrelevantIn a network without evidence, IBP converges in one iteration top-down

X

X

YSlide24

Nodes with extreme supportObserved variables with xtreme priors or xtreme support can nearly-cut information flow:

D

B

1

E

D

AB2

E

B

E

C

E

B

E

C

C

1

C

2

Average Error vs. PriorsSlide25

Conclusion: For Networks with DeterminismIBP converges & sound for zero beliefsIBP’s power to infer zeros is as weak or as strong as arc-consistency

However: inference of extreme beliefs can be wrong.Cutset property (Bidyuk and Dechter, 2000): Evidence and inferred singleton act like cutsetIf zeros are cycle-

cutset, all beliefs are exactExtensions to epsilon-cutset were supported empirically

.Slide26

Inference on Trees is Easy and DistributedBelief updating (sum-prod)

MPE (max-prod)CSP – consistency (projection-join)

#CSP (sum-prod)

P(X)

P(Y|X)

P(Z|X)P(T|Y)

P(R|Y)P(L|Z)

P(M|Z)

Trees are processed in linear time and memory

Also Acyclic graphical modelsSlide27

Inference on Poly-Trees is Easy and Distributed