/
Video Compression Standards : A Comparative Analysis of H.264, Dirac and AVS P2 Video Compression Standards : A Comparative Analysis of H.264, Dirac and AVS P2

Video Compression Standards : A Comparative Analysis of H.264, Dirac and AVS P2 - PowerPoint Presentation

yoshiko-marsland
yoshiko-marsland . @yoshiko-marsland
Follow
410 views
Uploaded On 2018-11-19

Video Compression Standards : A Comparative Analysis of H.264, Dirac and AVS P2 - PPT Presentation

By Sudeep Gangavati ID 1000717165 EE5359 Spring 2012 UT Arlington Objective and motivation The goal to compare H264AVC AVS P2 and Dirac Video quality assessment MSE PSNR SSIM ID: 731009

dirac video 264 avs video dirac avs 264 fig prediction codec qcif coding bitrate intra ssim psnr mse quality

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Video Compression Standards : A Comparat..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Video Compression Standards : A Comparative Analysis of H.264, Dirac and AVS P2

By

Sudeep

Gangavati

ID 1000717165

EE5359 Spring 2012,

UT ArlingtonSlide2

Objective and motivation

The goal – to compare H.264/AVC, AVS P2 and Dirac

Video quality assessment – MSE, PSNR, SSIM

Ever

increasing demand for video

compression

Several

different video coding standards have been developed to address the needs efficient video coding for multitude of applications like video streaming, TV broadcasting, 3D TV, Free-viewpoint TV etc.

[24]. Slide3

H.264/AVC Features

The most widely used video coding standard

Fig. 1 Video coding standards evolution [12]Slide4

FeaturesMotion compensated coding structure

Picture

 slices  MBs 

subMBs

 blocks 

pixels. This is shown in Figure 3.

Only 4:2:0

chroma

format was

supported

earlier and 4:2:2 ,

4:4:4 were added

later. This is shown in Figure 2.

I , P and B slices

Derived slices SI and SP Slide5

Fig 2.

4:4:4,

4:2:2

,

4:2:0

sampling patternsSlide6

Fig 3. H.264 syntaxSlide7

Profiles and levels

Main Profile

Baseline Profile

Extended Profile

High ProfileSlide8

H.264 Profiles

Fig.4 H.264 profiles [1]Slide9

H.264 Encoder

Fig. 5 Encoder structure for H.264 [2]Slide10

H.264 Decoder

Fig.6 Decoder structure of H.264 [2]Slide11

Intra and Inter Predictions

Intra Prediction :

Uses

spatial prediction to reduce spatial redundancy.

4 X 4

luma – 9 modes 16 X 16

luma

– 4 modes

8

X

8

luma

-

9

modesSlide12

Intra prediction modes for 4X4

luma

Fig.7(a) Intra prediction modes [6]

The samples above and to the left,

labelled

A-M in Figure 7 have previously been encoded and reconstructed and are therefore available in the encoder and decoder to form a prediction reference.Slide13

Intra Prediction Modes for 16x16 luma

Again the previously encoded samples directly above and to the left of the

macroblock

have been reconstructed and are used for the prediction

Fig 7 (b) Intra prediction modes for 16x16

luma

[6]Slide14

Inter prediction

Uses motion estimation and motion compensation (MC).

Fig.8 H.264 Inter prediction [5]Slide15

De-blocking filter[5]

Is used to reduce the blocking artifacts.

Since

the filter is present in the loop , it prevents the propagation of the blocking artifacts

.

Fig. 9

Boundaries in a

macroblock

to be filtered (

luma

boundaries shown with solid lines

and

chroma

boundaries

shown with dotted

lines) [1]Slide16

AVS China[7]

AVS-Audio Video Standard

Standardization includes system, audio, video and digital copyright management.

Goal – to achieve coding efficiency with reduced complexity. Slide17

AVS Parts [3]

Fig. 10 AVS China parts [3]Slide18

AVS P2 Encoder [7]

Fig. 11 AVS part 2 encoder [7]Slide19

AVS P2 decoder

Fig 11 (a) AVS P2 decoder block diagram [7]Slide20

Intra Prediction in AVS[7]

Spatial prediction is used in intra coding in AVS part 2.

The Intra prediction is based on 8x8 block

The intra prediction method is derived from the neighboring pixels in left and top blocksSlide21

Intra Prediction contd.

Fig.12 (a) Five different modes for intra luminance prediction[16]Slide22

Inter prediction [16]

Inter prediction in AVS is by motion compensation and motion estimation [16].

As shown in the Figure 12 (b), the

macroblock

can have 16 x 16

, 8 x 16, 16 x 8 or 8 x 8 [16].

Fig 12 (b)

Macroblock

sizes [16]Slide23

Dirac

Dirac is a video codec originally developed by BBC

This technique is used from web streaming of videos to HD TV applications to storage of content.

Dirac can compress any resolution picture

The encoder and decoder diagrams are shown in Figure 13 (a) and (b) respectively.Slide24

Figure 13 (a) Dirac encoder[8]

Figure 13 (b) Dirac decoder[8]

Dirac encoder and decoder : Slide25

Dirac pro Features

Dirac

pro

supports the following technical aspects

[9]:

Intra-frame coding only 10 bit 4:2:2

No s

ubsampling

Lossless or visually lossless compression

Low latency on encode/decode

Support

for multiple HD image formats and frame rates

Low complexity for decodingSlide26

Experimental Results

Implementation of DIRAC Software 1.02:

Video sequence:

news_qcif.yuv

.

Width: 176, Height: 144.

Total number of frames: 300

Number of frames used for encoding: 100.

Frame rate: 25 FPS. File Size: 3713kB

.

Table

1: Parametric values for Dirac video

codec

Quality Factor

Compressed File Size

Bit rate (kBps)

Y-PSNR(dB)

Y-MSE

Y-SSIM

Comrpession Ratio

0

38

9.573

25.773

187.13

0.79

98:1

5

61

15.571

32.134

39.588

0.95

60:1

10

369

96.301

46.699

1.41

0.98

10:1

15

1278

130.12

51.799

0.743

0.99

2.9:1Slide27

Experimental Results contd.

Fig.14 Output

of Dirac video codec at

different Quality Factors

Quality Factor = 0

Quality Factor = 5

Quality Factor = 10Slide28

Video

sequence:

foreman_qcif.yuv

Width:

176;

Height: 144.

Total number of frames: 300

Number of frames used for encoding: 100.

Frame rate: 25

FPS; File

Size:

3713kB

Quality Factor (QF)

Compressed File Size (kB)

Bitrate (kBps)

Y-PSNR (dB)

Y-MSE

Y-SSIM

Compression Ratio

0

27

8.991

21.5

301.56

0.6875

138:1

5

58

12.675

28.91

110.12

0.8613

64:1

10

581

140.673

43.675

0.827

0.979

6:1

15

1340

170.342

49.556

0.667

0.99

2.7:1

Table 2. Parametric values of Dirac video codec for

foreman_qcif

videoSlide29

QF=0

QF=05

QF=10

QF=15

Fig.15

Output of Dirac video codec at different Quality

Factors for

foreman_qcif

video Slide30

Implementation of AVS softwareVideo sequence used:

news_qcif.yuv

Width: 176;Height: 144

Total number of frames: 300; Number of frames used: 100

Frame rate: 25 FPS; File Size: 3713kB

QP=0 QP=10 QP=50

Fig.16

Output of

AVS video

codec at different Quality

Factors for

news_qcif

video

Fig.17

Output of

AVS video

codec at different Quality

Factors for foreman _

qcif

videoSlide31

Implementation of AVS software

Quantization Parameter (QP)

Compressed File Size

Bit rate (kBps)

Y-PSNR(dB)

Y-MSE

Y-SSIM

Comrpession Ratio

0

980

554.19

54.773

0.2587

0.9997

3:1

10

442

219.12

49.72

0.5525

0.9945

9:1

30

64.0

156.49

38.49

9.23

0.9760

58:1

50

12.0

29.26

27.96

104.13

0.8506

309.7

Table 3. Parametric values of AVS video codec for

news_qcif

video

QP

Compressed file size

Bitrate

Y-PSNR

Y-MSE

Y-SSIM

Compression Ratio

0

1123

478.88

52.658

0.2823

0.998

3:1

10

450

278.9

48.775

0.781

0.9903

8.25:1

30

70

79.66

35.231

13.56

0.867

53:1

50

14

24.5

29.780

146.32

0.776

265:1

Table 4. Parametric values of AVS video codec for

foreman_qcif

videoSlide32

Implementation of H.264 software (JM 18.0)

Table 5. Parametric values of H.264 video codec for

news_qcif

video

Table 6. Parametric values of H.264 video codec for

foreman_qcif

video

Quantization Parameter (QP)

Compressed File Size

Bit rate (kBps)

Y-PSNR(dB)

Y-MSE

Y-SSIM

Comrpession Ratio

0

279

685.19

60.773

0.21619

0.999

13:1

10

208

410.21

48.545

0.9653

0.9947

17.8:1

30

123

155.62

35.721

17.4211

0.8626

30:1

50

35

29.49

28.736

224.23

0.7644

27.5:1

Quantization Parameter (QP)

Compressed File Size

Bit rate (

kBps

)

Y-PSNR(dB)

Y-MSE

Y-SSIM

Comrpession Ratio

0

379

485.19

62.773

0.21619

0.999

9:1

10

210

340.21

54.67

0.7769

0.9947

18:1

30

98

155.62

34.721

14.4211

0.8626

39:1

50

25

39.49

27.736

236.23

0.6944

27.5:1Slide33

Plots of PSNR (dB) vs. Bitrate (kBps)

Fig18.

Plot of PSNR

vs.

Bitrate for different codecs for

news_qcif

videoSlide34

Plots of PSNR (dB) vs. Bitrate (kBps

) contd..

Fig 19.

Plot of PSNR

vs.

Bitrate for different codecs for

foreman_qcif

videoSlide35

Plots of MSE vs. Bitrate

Fig 20.

Plot of MSE

vs.

Bitrate for different codecs for

news_qcif

videoSlide36

Plots of MSE vs. Bitrate contd..

Fig 21.

Plot of MSE

vs.

Bitrate for different codecs for

foreman_qcif

videoSlide37

Plot of SSIM vs. Bitrate

Fig 22.

Plot of

SSIM vs.

Bitrate for different codecs for

news_qcif

videoSlide38

Plot of SSIM vs. Bitrate

Fig 23.

Plot of

SSIM vs.

Bitrate for different codecs for

foreman_qcif

videoSlide39

Computational complexity

Fig 24.

Plot of time taken by each codec at QP=30 and QF=10Slide40

Conclusions

The plots and tabulations show that with the increase in bitrate, there is an increase in PSNR and SSIM and reduction in the MSE.

Therefor from the plots and the tables, it can be concluded that H.264 provides optimum performance with respect to PSNR, MSE and SSIM over AVS part 2 and Dirac.

Regarding the computational complexity, H.264 is more complex than the other two standards viz., AVS part 2 and Dirac. This is due to the fact that H.264 supports several prediction modes and has varied

macroblock

sizes when compared to AVS and Dirac.Slide41

References

[1] Soon-

kak

Kwon, A.

Tamhankar

and K.R.

Rao

, “Overview of H.264 / MPEG-4 Part 10 (pp.186-216)”, Special issue on “ Emerging H.264/AVC video coding standard”, J. Visual Communication and Image Representation, vol. 17,

pp.186-216,

April 2006

.

[2]

T.

Wiegand

, G. Sullivan, G.

Bjontegaard

and A.

Luthra

, “Overview of the

H.264/AVC video coding standard

,” IEEE Trans. on Circuits and Systems for Video Technology

,

vol. 13, pp.560-576, July 2003

.

[3]

T.

Sikora

, “Digital video coding standards and their role in

video communications”, Signal Processing for Multimedia, J.S. Byrnes (Ed.), IOS press, pp. 225-251, 1999.

[4]

K. R.

Rao

, and D. N. Kim, “Current

video coding standards

: H.264/AVC, Dirac, AVS China and VC-1,” IEEE 42nd Southeastern symposium on system theory (SSST), March 7-9 2010, pp. 1-8, March 2010.[5]Z. Wang and A.C. Bovik

, “A universal image quality index”, IEEE Signal Processing Letters,Vol.9, pp. 81-84, March 2002.

[6] Iain Richardson, “ The H.264 advanced video coding standard”, Second

Edition,Wiley

, 2010

[7]

L. Yu et

al,

“An Overview of AVS-Video: tools, performance and complexity”, Visual Communications and Image

Processing,

Proc. of SPIE, vol. 5960, pp

. 679-690,

July

2005.

[8]

“ The Dirac web page” :http://

www.bbc.co.uk/rd/projects/dirac/intro.shtml

[9]

“Dirac Codec Wiki Page ” at http://en.wikipedia.org/wiki/Dirac(codec

)

[10]“Dirac

Pro web page” at http://

www.bbc.co.uk/rd/projects/dirac/diracpro.shtml

[11]

“Video on the web “

a http://etill.net/projects/dirac_theora_evaluation/

[12]

J.Lou

Advanced video codec optimization

techniques”, Doctoral Dissertation, Electrical Engineering Department, University of Washington, August 2009Slide42

References

[

13]

H.264 AVC JM Software : http://iphome.hhi.de/suehring/tml

/

  [14]

H.264 decoder: http://www.adalta.it/Pages/407/266881_266881.jpg

 

[15]

W.

Gao

et al

,

“AVS - The Chinese

next-generation video coding

Standard” NAB, Las

Vegas, 2004.

 

[16]

X. Wang

et al

., “Performance comparison of AVS and H.264/AVC video coding standards” J.

Comput

. Sci. & Technol., vol.21, No.3, pp.310-314, May 2006.

 

[17]

AVS China part 2 video software, password protected : ftp://124.207.250.92/ [18] S. Swaminathan and K.R. Rao, “Multiplexing and demultiplexing of AVS CHINA video with AAC audio,” TELSIKS 2011, Nis, Serbia, 5-8 Oct. 2011. [19] Dirac Pro Software : http://diracvideo.org/download/ 

[20] M. Tun, K.K. Loo and J. Cosmas, “Semi-hierarchical motion estimation for the Dirac video codec,” 2008 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, pp.1–6, March 31-April 2, 2008. [21] T. Davies, “The Dirac Algorithm”: http://dirac.sourceforge.net/documentation/algorithm/,

2008. [22] Dirac video codec – A programmer's guide: http://dirac.sourceforge.net/documentation/code/programmers_guide/toc.htm [23] A. Ravi and K.R. Rao, “Performance analysis and comparison of the Dirac video codec with H.264 / MPEG-4 Part 10 AVC,”IJWMIP, vol.4, pp.635-654, No.4, 2011.[24] Proceedings of the IEEE Special issue on Frontiers of Audiovisual Communications, vol. 100, No.4, April 2012