/
VISION Dr. Janet Fitzakerley VISION Dr. Janet Fitzakerley

VISION Dr. Janet Fitzakerley - PowerPoint Presentation

SweetLittleAngel
SweetLittleAngel . @SweetLittleAngel
Follow
344 views
Uploaded On 2022-07-28

VISION Dr. Janet Fitzakerley - PPT Presentation

jfitzakedumnedu httpwwwdumnedujfitzakeLecturesTeachinghtml Critical Facts There are two fundamental protective mechanisms for the eye Regulation of eyelid position including BLINKING ID: 930154

light visual perception vision visual light vision perception rods system results center stimuli occurs acuity cells nervous retina muscles

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "VISION Dr. Janet Fitzakerley" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

VISION

Dr. Janet Fitzakerley

jfitzake@d.umn.edu

http://www.d.umn.edu/~jfitzake/Lectures/Teaching.html

Slide2

Critical Facts

There are two fundamental protective mechanisms for the eye. Regulation of eyelid position (including

BLINKING

) involves striated (ACh; nicotinic) and smooth (NE; α1 adrenergic) muscles. TEAR PRODUCTION occurs spontaneously (basal), reflexly or in response to emotional stimuli, and is partially regulated by the parasympathetic nervous system (ACh; muscarinic). EPIPHORA (overflow of tears) can be due to either overproduction or blocked drainage.The cornea and lens focus light on the retina; the cornea has greater refractive power but the focusing power of the lens can be adjusted to allow near vision (accomodation). Refractive errors include cataracts, hyperopia, myopia, presbyopia and astigmatism.Light intensity is regulated by the PUPILLARY LIGHT REFLEX, which causes MIOSIS as a result of parasympathetic stimulation of the sphincter pupillae muscles (muscarinic receptors). MYDRIASIS results from sympathetic stimulation (α1 receptors) that activates the dilator pupillae muscles.Increased intraocular pressure causes loss of vision (potentially permanent). Open angle glaucoma (the most common form) results from overproduction of the aqueous humor. Closed angle glaucoma (typically the most rapidly evolving form) is caused by blockage of fluid outflow.RODS are responsible for SCOTOPIC vision (the monochromatic vision that occurs in low light). The three types of cones (blue, green and red; or Short, Medium and Long wavelength) have better temporal and spatial resolution than rods, making PHOTOPIC VISION better for discrimination of surfaces and movement under bright light conditions.The ability to discriminate fine details of the visual scene is termed VISUAL ACUITY. Three types are recognized: SPATIAL, TEMPORAL and SPECTRAL. Visual acuity is primarily a function of the cone system.

Slide3

Critical Facts (cont’d)

PHOTOTRANSDUCTION

occurs via a 4 step process that uses a

2nd messenger cascade to amplify the signal. In rods, activation of rhodopsin ultimately results in the closure of cyclic nucleotide gated Na+ channels, and hyperpolarization of the photoreceptor.The VISUAL CYCLE consists of bleaching and recycling of 11-cis-retinol between the photoreceptors and the retinal pigment epithelium (RPE). It is a key component of dark adaptation in rods and is disrupted in vitamin A deficiency, and macular degeneration.Ganglion cells (GCs) are like CNS neurons, in that their contrast-detecting capabilities are enhanced by lateral inhibition provided by amacrine cells. On-center GCs produce more action potentials when stimulated by a bright light in the center of their receptive field, and inhibited by stimuli delivered to the surround. Off-center GCs are stimulated by surround stimuli, and inhibited by center stimuli.Perception of colour is a learned process which involves associating patterns of photoreceptor activity with a particular hue. Even though the distribution of cones within the retina is unique to each individual, the description of hue is standardized by teaching people to associate specific words with their unique pattern of cone response.Within primary visual cortex (V1), inputs from the fovea are overrepresented relative to the periphery. The separate maps that are established for each visual field in primary V1 are merged to form a single perceptual map of visual space. Due to OCULAR DOMINANCE, cortical can extract depth cues based on the disparity in the images, providing the basis for STEREOPSIS (depth perception).STRABISMUS is a muscle imbalance that results in a misalignment of the visual axes of the two eyes. Any type of strabismus that occurs after ~6 months of age causes DIPLOPIA (perception of a single object as double) because the images fall on noncorresponding parts of the retinas. In young children, suppression of the image in the weaker eye can cause a permanent decrease in visual acuity (AMBLYOPIA).

Slide4

Essential Material from Other Lectures

Structure of the eyeball, including the innervation of the levator palpebrae superioris and superior tarsal muscle, the lacrimal gland, the cornea and the lens (Dr. Severson, Applied Anatomy)

CSF formation (Dr. Drewes, Nervous System)

Pupillary reflex/innervation of the dilator and constrictor muscles of the pupil (Dr. Forbes, Nervous System)Anatomical structures associated with aqueous humor formation and flow, including the ciliary body and the canal of Schlemm (Dr. Severson, Applied Anatomy).Histology of the retina (Dr. Downing, Nervous System).Receptor potentials and lateral inhibition (Dr. Fitzakerley, Nervous System)Visual Fields (Dr. Forbes, Nervous System)

Slide5

Learning Objectives

Be able to describe the neurotransmitters involved in eyelid movements, and characterize the purpose and types of blinking. Explain epiphora.

Explain the processes of refraction and accomodation as they apply to transmission of light to the retina. Define the following refractive errors:

cataracts, hyperopia, myopia, presbyopia and astigmatism.Describe the processes of mydriasis and miosis, including the neurotransmitters involved.Explain how the aqueous humor is formed and drains, and outline control mechanisms for each part of the process. Detail the differences between closed angle and open angle glaucoma.Compare and contrast the physiology of rods and cones. Relate the physiological differences between rods to the different forms of visual acuity. Differentiate between retinopathy and retinitis pigmentosa.List the steps in phototransduction, including the properties of the receptor potential.Describe the visual cycle, and understand the perturbations that occur to this process during vitamin A deficiency and macular degeneration.Outline how lateral inhibition contributes to the receptive field properties of ganglion cells.Explain how the primary visual cortex processes color and motion, and generates depth perception. Describe how amblyopia develops from stabismus and diplopia.

Slide6

OPTICS

Slide7

Protective Mechanisms

There are two fundamental protective mechanisms for the eye. Regulation of eyelid position (including

BLINKING)

involves striated (ACh; nicotinic) and smooth (NE; α1 adrenergic) muscles. TEAR PRODUCTION occurs spontaneously (basal), reflexly or in response to emotional stimuli, and is partially regulated by the parasympathetic nervous system (ACh; muscarinic). EPIPHORA (overflow of tears) can be due to either overproduction or blocked drainage.

Slide8

Blinking

Slide9

Tear Production

Slide10

Focusing

The cornea and lens focus light on the retina; the

cornea has greater refractive power

but the focusing power of the lens can be adjusted to allow near vision (accomodation). Refractive errors include cataracts, hyperopia, myopia, presbyopia and astigmatism.

Slide11

Refraction

Slide12

Accomodation

Slide13

Refractive Errors

Slide14

Regulation of Light Intensity

Light intensity is regulated by the

PUPILLARY LIGHT REFLEX

, which causes MIOSIS as a result of parasympathetic stimulation of the sphincter pupillae muscles (muscarinic receptors). MYDRIASIS results from sympathetic stimulation (α1 receptors) that activates the dilator pupillae muscles.

Slide15

Formation of the Aqueous Humor

Increased intraocular pressure causes loss of vision

(potentially permanent).

Open angle glaucoma (the most common form) results from overproduction of the aqueous humor. Closed angle glaucoma (typically the most rapidly evolving form) is caused by blockage of fluid outflow.

Slide16

Slide17

Glaucoma

Slide18

PHYSIOLOGY OF THE RETINA

Slide19

Slide20

Visible Light

Slide21

Photoreceptors

Rods

are responsible for

SCOTOPIC vision (the monochromatic vision that occurs in low light). The three types of cones (blue, green and red; or Short, Medium and Long wavelength) have better temporal and spatial resolution than rods, making PHOTOPIC VISION better for discrimination of surfaces and movement under bright light conditions.

Slide22

Slide23

RODS

CONES

Amount of photopigment

MoreLessPigment type1 = rhodopsin3 overlapping patterns of activity for colour (see page 15)

Sensitivity

High

(1 photon if dark adapted)

Saturated in daylight

Smaller dynamic range

Low

(multiple photons to activate)

Saturate in very intense light

Large DR

Temporal resolution

Low

Slow response

Responses are integrated

High

Fast response

Less integration

Spatial resolution

Poor

Respond to scattered light

Not in fovea

large amount of convergence onto

bipolar cells

Very good

Respond to narrow spots of light

In fovea

little amount of convergence onto

bipolar

cells

Slide24

Visual Acuity

The ability to discriminate fine details of the visual scene is termed

VISUAL ACUITY

. Three types are recognized: SPATIAL, TEMPORAL and SPECTRAL. Visual acuity is primarily a function of the cone system.

Slide25

Slide26

Phototransduction

PHOTOTRANSDUCTION

occurs via a 4 step process that uses a

2nd messenger cascade to amplify the signal. In rods, activation of rhodopsin ultimately results in the closure of cyclic nucleotide gated Na+ channels, and hyperpolarization of the photoreceptor.

Slide27

Slide28

Receptor Potential

Slide29

Retinosis Pigmentosa

Slide30

Retinopathy

Slide31

Visual Cycle

The

VISUAL CYCLE

consists of bleaching and recycling of 11-cis-retinol between the photoreceptors and the retinal pigment epithelium (RPE). It is a key component of dark adaptation in rods and is disrupted in vitamin A deficiency, and macular degeneration.

Slide32

Slide33

Vitamin A Deficiency

Slide34

Macular Degeneration

Slide35

Ganglion Cell Physiology

Ganglion cells (GCs) are like CNS neurons, in that their contrast-detecting capabilities are enhanced by

lateral inhibition

provided by amacrine cells. On-center GCs produce more action potentials when stimulated by a bright light in the center of their receptive field, and inhibited by stimuli delivered to the surround. Off-center GCs are stimulated by surround stimuli, and inhibited by center stimuli.

Slide36

Slide37

VISUAL CORTEX PHYSIOLOGY

Slide38

Slide39

Colour Perception

Slide40

Colour Perception

Perception of colour

is a learned process which involves associating patterns of photoreceptor activity with a particular hue. Even though

the distribution of cones within the retina is unique to each individual, the description of hue is standardized by teaching people to associate specific words with their unique pattern of cone response.

Slide41

Edge Perception

Slide42

Topographic Maps

Within primary visual cortex (V1),

inputs from the fovea are overrepresented relative to the periphery

. The separate maps that are established for each visual field in primary V1 are merged to form a single perceptual map of visual space. Due to OCULAR DOMINANCE, cortical can extract depth cues based on the disparity in the images, providing the basis for STEREOPSIS (depth perception).

Slide43

Slide44

Depth Perception

Slide45

Development

STRABISMUS

is a muscle imbalance that results in a misalignment of the visual axes of the two eyes. Any type of stabismus that occurs after ~6 months of age causes

DIPLOPIA (perception of a single object as double) because the images fall on noncorresponding parts of the retinas. In young children, suppression of the image in the weaker eye can cause a permanent decrease in visual acuity (AMBLYOPIA).