/
Unconventional superconductivity?                           The strange case of Unconventional superconductivity?                           The strange case of

Unconventional superconductivity? The strange case of - PowerPoint Presentation

agentfor
agentfor . @agentfor
Follow
345 views
Uploaded On 2020-06-25

Unconventional superconductivity? The strange case of - PPT Presentation

Ce Cu 2 Si 2 F Steglich Max Planck Institute for Chemical Physics of Solids MPI CPfS Dresden Germany Center for Correlated Matter Zhejiang University CCM ZJU Hangzhou China ID: 787039

band wave phase prl wave band prl phase spin cecu2si2 pairing stockert change sign nature site order surface phys

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "Unconventional superconductivity? ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Unconventional superconductivity? The strange case of CeCu2Si2

F. Steglich+,§,# + Max Planck Institute for Chemical Physics of Solids (MPI CPfS), Dresden, Germany § Center for Correlated Matter, Zhejiang University (CCM, ZJU), Hangzhou, China # Institute of Physics, Chinese Academy of Sciences (IOP, CAS), Beijing, China

Collaboration

Neutron

scattering

, STM/STS

J

. Arndt, O.

Stockert

, S

. Wirth (MPI

CPS, Dresden)

Penetration

depth

,

specific

heat

G

. M. Pang, M. Smidman,

J. L. Zhang, L.

Jiao

, Z. Weng. Y. Chen, W. Jiang,

Y. Zhang, W. Xie, H. Lee, H. Q. Yuan (CCM, ZJU Hangzhou)

Single

crystals

H. S.

Jeevan

, P. Gegenwart (U. Augsburg):

Ce

Cu

2

Si

2

C.

Krellner

(U. Frankfurt):

Yb

Rh

2

Si

2

Theory

G

. Zwicknagl (TU Braunschweig

)

J. X. Zhu (LANL)

E

. M. Nica, R. Yu, Q. Si (

RCQM,

Rice U.,

Houston, TX)

Slide2

Phase diagrams of unconventional superconductors

Cuprates

,

……

Organic charge-transfer salts,

Fe-based compounds,

Spin, charge, orbital, lattice excitations

B. Keimer et al., Nature (2015)

Heavy fermion metals separation of scales: λSO(103-104K), ΔCF(102K), TK ,TRKKY(10 K), Tc (1 K)↷ spin - / charge - fluctuations

Quantum

critical

paradigm

: AF QCP in clean,

stoichiom

. HF

metal

unconv

. SC!

Explore

Ce

Cu

2

Si

2

&

Yb

Rh

2

Si

2

!

Slide3

Ce

Cu2Si2Homogeneity range: ~ 1% Cu/Si site exchange ↑

Cu deficit true stoichiometry Cu excess

ΔCF ≫

kBTK∽ JK ≃ 2 meV S

eff = 1/2Pairing interactions ≤ IRKKY ≃ JK

Slide4

Quantum

criticality in CeCu2Si2χ‘‘T3/2 = f (

ħ

ω

/(k

BT)3/2)

[J. Arndt et al., PRL 106, 246401 (’11)]Δρ ~ T3/2, γ

= γ0 – bT1/2 [P. Gegenwart et al., PRL 81, 1501 (‘98)]

3D-SDW QCPB - p phase diagram[E. Lengyel et al., PRL 107, 057001 (‘11)S-type crystal in low-T n-stateA/S-type crystal

Slide5

(1-band) d - wave superconductivity in CeCu2Si

2 Cu

NQR

K.

Fujiwara

et al., JPSJ 77,

123711 (‘08)cf. alsoK. Ishida et al., PRL 82, 5353 (‘99)

T

= Tc : no Hebel-Slichter peak T < Tc : 1/T1 ~ T3 d - wave SC, nodes of Δ(k)strong coupling d – wave SC: 2

Δ

0

/

k

B

T

c

= 5

[

weak

coupling

d

-

wave

SC:

2

Δ

0

/

k

B

T

c

= 4.3]

Slide6

T - dependence of specific heat for Ce

Cu2Si2 [S. Kittaka et al., PRL 112, 067002 (2014)]T. Takenaka et al., PRL

119

, 077001 (2017):

T

c insensitive against el-irradiation Fully gapped as T → 0

CeCu2Si2: Two-band s-wave superconductor without sign-changing Δ(k) [BCS SC] ↷

Slide7

T -

dependence of superfluid density ϱs(T) in CeCu2

Si

2

[G. M. Pang et al.,

PNAS 115, 5343 (2018)]

Slide8

Harmless disorder in

CeCu2Si2Tc ≃ 0.6 K

insensitive

against variations of

ϱ0 : ϱ0

(“S”) ≃ 4 ϱ0(“A/S”) G. M. Pang et al., PNAS 115, 5343 (2018)•

Cu/Si interchange < 1 % (change of ϱ0)

harmless• shift from lattice sites into interstitials (el. irradiation)

Slide9

Cu

-site: xc ≃ 1 at% for

Mn

,

Pd

, Rh (Δ

TK ≃ + 7 mK)Atomic substitution in CeCu2Si2

[H. Spille, U. Rauchschwalbe, FS, Helv. Phys. Acta 56, 165 (1983); H. Q. Yuan, F. M. Grosche, M. Deppe et al., Science 302, 2104 (2003)]

Ce-site (size-dependence): ΔrCe-M [Å] xc[at%] Sc + 0.28 1 Y + 0.13 6 Th + 0.06 20 La - 0.03 10 site dependenceIncompatible with s++ pairing[P. W. Anderson, Phys. Rev. Lett. 3, 325 (1959)]

Si

-site:

x

c

:

(15 – 20) at%

for

Ge

x

=

0.1

:

l

mfp

>

ξ

;

0.25

:

l

mfp< ξ

Slide10

Nature of the AF (A) phase in CeCu2Si2[O. Stockert

, G. Zwicknagl et al., PRL 92, 136401 (2004)]Observation of AF satellite peaksin (hhl) scattering planeLong-range AF order with propagation vector QAF = (0.215 0.215 0.530) at T

= 50 mK

T

N

 0.8 Km

0 ≲ 0.1 B

Slide11

Nesting of large Fermi surface in Ce

Cu2Si2[O. Stockert, G. Zwicknagl et al., PRL 92, 136401 (2004)]Fermi surface of heavy quasiparticles calculated with renormalized band method, m*

 500 m

e

warped columns along tetragonal axis

Static susceptibility in (hhl

) planeNesting for incommensurate wave vectorτ ≃ (0.21 0.21 0.55) ≃ QAF

Fermi surface unstable with respect to formation of spin-density wave

Slide12

k =

QAFSuperconductivity in CeCu2Si2 near a (3D) SDW QCP[O. Stockert et al., Nature Phys. 7

, 119 (2011)]

slowing

down“

Δ

Г

~ Tαα = 1.38 ∓ 0.16(3D SDW) α = 1.5

[J. Arndt et al.,

PRL

106

, 246401 (2011)]

B

= 2 T:

quasielastic

line

, HWHM

T

K

B

= 0:

spin

gap

below

peak

at 0.2

meV

Propagating ‘paramagnon‘ mode (not a ‘spin

r

esonance

)

at

3.9

k

B

T

c

[<

2

Δ

1

(

T

=0)

≃ 5

k

B

T

c

]

Slide13

No s - wave superconductor

s

++

: doesn‘t show

sign change in Δ(k)! no onsite pairing of HFs: Ueff ≃ kB

TK!s+- : nesting wavevector different from QAF

can‘t explain spin resonance!↷ “d+d band - mixing“ Cooper pairing [E. Nica et al. ‘16]

Large

INS intensity in

sc state

at

k

=

Q

AF

and

low

ħ

ω

,

i.e.,

coherence factor {1-cos[

Φ

(

k

)

]} ≃ 2,

where

Φ(k) is the phase difference in Δ(k) between k & k + Q

AF

,

Φ

(

k

) ≃

π

sign

change

of

Δ

(

k

)

along

Q

AF

inside

dominating

HF

band

!

Inelastic

n-

scattering

reveals

sign

change

of

Δ

(

k

)

[O. Stockert et al.,

Nature Phys.

7

, 119 (2011)]

2 - band

d

-

wave

SC

without

nodes

,

cf.

3

He -

B

phase

(

p

-

wave

pairing

)

Slide14

Band-mixing ‘

d+d ‘ pairing model: explains ALL data [(E.M. Nica, R. Yu and Q. Si., npj Quantum Materials (2017) 2:24]

Intraband

:

~ d

x

2-y2Interband:~ dxy Finite gap

on whole Fermi surface; Sign-change of intra-band pairing (within warped cylinders).Band basis:

Slide15

Yb

Rh2Si2: Emergence of SC by

nuclear

AF

order

[Science 351, 485 (2016)]

a.TN

≃ 70 mK: 4f - electr. AF order TB ≃ 10 mK: increase of M(T) TA ≃ 2 mK: new phase transition

b.

T

c

2

mK

:

SC [

χ

’’(

T

):

1

st

order

!)]

c.

T

A

2 mK: “

A

- phase

d.

B

<

4 mT:

T

A

>

T

c

Slide16

TB:

small sc regions, Tc: large superconducting shielding

T

<

T

c = 2 mK: large superconducting

shielding signal in zfc - MDC(T) and χ

AC(T)T < TB = 10 mK: partial sc shielding – concurs with increasing fc -

M

DC

(

T

)

which

is

illustrating

decreasing

primary

staggered

magnetization

,

m

AF

,

due

to

competing

nuclear

(

A

-phase)

short

-range

correlations

(

nuclear

spin

entropy

!)

Slide17

Summary

YbRh2Si2⦁ MDC(T), χAC(

T

)

prove

:

(bulk) heavy-fermion SC at B < 4 mT

⦁ YbRh2Si

2: - SC near (4f – “Mott – type“) transition (T = 0), like CeRhIn5 at p > 0

-

both systems form

link

between

(≃ 50)

HFSCs

and

cuprates, organics, …

near

true Mott

transition

B

c2

≃ 25 T/K

from

Meissner

m

easurements

(same from shielding

measurements)

E. Schubert et al. (2016)

Slide18

Quantum Critical Paradigm

: Unconventional SC at HF AF QCPs

Ce

Pd

2

Si

2N. D. Mathur et al., Nature

394, 39 (1998)● CeCu2Si2: fully gapped 2 - band d - wave superconductor ● YbRh2Si2:

HF SC, Tc = 2 mK● Unconventional SC near AF QCPs: robust phenomenonFurther reading: M. Smidman et al., Phil. Mag. 98, 2930 (2018)