/
1 Coil Day 1 Coil Day

1 Coil Day - PowerPoint Presentation

alida-meadow
alida-meadow . @alida-meadow
Follow
391 views
Uploaded On 2016-02-21

1 Coil Day - PPT Presentation

915 am Wednesday August 28 th 2013 140 Cory Hall Newest Instructional Lab EECS Dept UC Berkeley 2 What Coil Day WillWont Cover Will Wont C13 receive arrays for small animals at 3 T ID: 225258

coil c13 coils ucsf c13 coil ucsf coils rat bay mission birdcage amp vol imaging cylinder noise urea array image receive acid

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "1 Coil Day" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

1

Coil Day9:15 am, Wednesday, August 28th, 2013140 Cory Hall, Newest Instructional Lab, EECS Dept.UC BerkeleySlide2

2

What Coil Day Will/Won’t CoverWillWon’t

C13 receive arrays for small animals at 3 T

Sample-noise dominance vs. coil-noise dominance

Comparisons/contrasts to proton surface coils

Proton traps

Tuning and matching

C13 preampsQ-spoilingArray DecouplingCables and cable trapsBuilding skills and testing techniques not in the literature

Volume coils (body coils)

Birdcage coils

Double-tuned coils

Transmit coilsSlide3

3

A Few ReferencesD.I. Hoult and R.E. Richards, The signal-to-noise ratio of the nuclear magnetic resonance experiment, Journal of Magnetic Resonance, Vol. 24, pp. 71-85, 1976.D.I. Hoult, The NMR receiver: A description and analysis of design, Progress in NMR Spectroscopy, Vol. 12, pp. 41-77, 1978.

P.B. Roemer, W.A. Edelstein, C.E. Hayes, et al.,

The NMR phased array

, Magnetic Resonance in Medicine, Vol. 16, pp. 192-225, 1990.

P.J. Fish,

Electronic noise and low

noise design, Macmillan, 1993.G. Scott, Build your own receiver coils, personal notes, Stanford University, 1997.J.H. Ardenkjaer-Larsen, B. Fidlund, A.Gram, et al., Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR, Proceedings of the National Academy of Sciences, USA, Vol. 100, pp. 10158-10163, 2003.

L. Darasse and J.C. Ginefri,

Perspectives with cryogenic RF probes in biomedical MRI

, Biochimie

,

Vol. 85

, pp. 915-937, 2003

.

J. Mispelter, M. Lupu and A. Briguet,

NMR probeheads for biophysical and biomedical experiments

, Imperial College Press, 2006.

F.D. Doty, G. Entzminger, J. Kulkarni, K. Pamarthy and J. P. Staab,

Radio frequency coil technology for small-animal MRI

, NMR Biomed., Vol. 20, pp. 304-325, 2007.

J-X. Wang, N. Tian, F.J. Robb, A.P. Chen, L. Friesen-Waldner, B.K. Rutt and C.A.

McKenzie,

An

8-channel coil array for small animal 13C MR imaging

,

ISMRM, 2010.

J. Tropp, J.M. Lupo, A. Chen, et al.,

Multi-channel metabolic imaging, with SENSE reconstruction, of hyperpolarized [1-(13)C] pyruvate in a live rat at 3.0 Tesla on a clinical MR scanner

, Journal of Magnetic Resonance, Vol. 208, pp. 171-177, 2011.

J.T Vaugh and J.R. Griffiths, eds.,

RF coils for MRI

, John Wiley and Sons, 2012.

J.P. Dunsmore,

Handbook of microwave

c

omponent

m

easurements with advanced VNA techniques

,

John Wiley and Sons, 2012.

B. Keil,

Construction of receive arrays

, ISMRM, 2013

.Slide4

4

Lactate

Alanine

Pyruvate

Revealing Cancer Metabolism w/C13 Imaging

Pyruvic acid metabolizes into lactate & alanine differently in tumors, compared to normal tissue:The sign of pyruvate/lactate flips.

Figue 4 from M.J. Albers et al., Cancer Research, 2008 (Kurhanewicz Group, UCSF).Slide5

5

Figue 2 from M.J. Albers et al., Cancer Research, 2008 (Kurhanewicz Group, UCSF).Slide6

6

Rat birdcage coil: normal rat injected with hyperpolarized urea . Thiis makes it possible to image the urea filtrate in the kidneys. This has potential use as a non-toxic perfusion measurement (at present, the only alternative involves nuclear medicine scans, but many patients with congenital kidney problem are children, who we wouldn’t want to expose to radiation).

Images courtesy Galen Reed, Vigneron Group, UCSF Mission Bay 3 T scanner

C13 image (from double-tuned tx-rcv birdcage coil)

The colorized C13 image is overlaid on an H1 anatomy image, also acquired w/the birdcage coil.Slide7

7

C13 imageColorized C13 image overlaid on H1 anatomy image

Images courtesy Galen Reed, Vigneron Group, UCSF Mission Bay 3 T scanner

Recent results: tagging hyperpolarized urea with N15 and exploiting long T2 Slide8

Images courtesy Peter Shin, Vigneron Group, UCSF Mission Bay 3 T scanner

Anesthetized rat in two 4-ch C13 paddle coils

Tail-vein catheter for injection of hyperpolarized pyruvic acid (C13)

C13 Parallel ImagingSlide9

Ch

1Ch 2

Ch

3

Ch

4

Ch

5Ch 6Ch 7

Ch

8

SSoS

Images courtesy Peter Shin, Vigneron Group, UCSF Mission Bay 3 T scanner

C13 images from each of the 8 coils in the two paddles:

Note: these two 4-ch paddle arrays were designed for human liver and brain imaging. It would be nice to have smaller, animal-dedicated, phased array coils – for better sensitivity.Slide10

10

Hyperpolarizer (GE Spin Lab)Photos: UCSF Mission Bay

Small vial (made out of PEEK plastic) for pyruvic acid and/or urea. If both are polarized together, the urea is put in the vial first, then the vial is dunked in liquid nitrogen and frozen, then the pyruvic acid is added on top of the frozen urea. They are frozen separately to prevent mixing.

The pyruvic acid is mixed with Trityl, and pipetted into the vial:

Then the vial is put in the hyperpolarizer for 2 hours (3.35 Tesla, 1.3

o

K).Slide11

11

Double-tuned, C13 & H1, birdcage rat coil (tx & rcv for C13 & H1)

Double-tuned, C13 & H1, birdcage mouse coil (tx & rcv for C13 & H1)

Photos: UCSF Mission Bay

After the pyruvic acid and/or urea is dissolved and removed from the hyperpolarizer, the spins only stay aligned for ~1 minute, so it’s immediately injected into a rat or mouse and imaged.

These are two commonly used birdcage coils at UCSF Mission Bay. The rat’s nose sticks out this end and is cupped with this anesthesia hose:Slide12

12

Photos: UCSF Mission Bay

For parallel imaging on a human subject, these two 4-channel paddle-shaped C13 receive-only arrays are available. The paddles must be used with a C13 transmitter such as this clamshell-shaped one (in Helmholtz coil configuration):

GE designer: Dr. James Tropp

J Magn Reson. 2011 January; 208(1): 171-177. Slide13

Eight C13 preamps

GE 8-channel C13 rat coil (from ISMRM 2010 abstract)

Inner cylinder: 8-ch C13 receive array, around the circumference of the cylinder

Outer cylinder: Birdcage C13 transmitter

13Slide14

Hard to see in this photo, but we’d like to have a copy of this 8-ch C13 receive array, as it would be useful to a number of UCSF researchers.

For parallel imaging acceleration, we like the geometrical configuration of having the 8-channels wrapped around the circumference of a cylinder.Inner cylinder: 8-ch C13 receive array, around the circumference of the cylinder

14Slide15

15

For Coil Day, we’re going to build a similar rat 8-ch C13 receive array, along with the associated preamps.

For the C13 transmitter, we’ll be using the clamshell tx which already exists at UCSF Mission Bay. Our rat cylinder will go inside the clamshell and both will slide into the bore of the 3 T scanner (where the body coil is used for H1 anatomy images of the rat). Slide16

16Slide17

17

Sample-noise dominance vs. coil-noise dominance...still to do ...Slide18

18

Fill factor: metric regarding the geometric coincidence between the coil and the sampleFill factor’s original definition: measure of the fraction of the (solenoildal)coil volume occupied by the sampleFill factor = (Magnetic energy stored inside the sample volume)/(Total magnetic energy stored by the coil)

...

a

nd some more slides still to do...