/
Variation on cubical sets Variation on cubical sets

Variation on cubical sets - PDF document

alida-meadow
alida-meadow . @alida-meadow
Follow
386 views
Uploaded On 2017-04-01

Variation on cubical sets - PPT Presentation

IfwehaveaLsystemuoniIandwehaveamapfIdMJwithinotinJwecande neasystemufoniJForinstanceiftisaLsystemwede netibtobetheconditionsa t ibfor independentofianda t ibifib isinLThisisasy ID: 333653

IfwehaveaL-system~uoni;Iandwehaveamapf:I!dM(J)withinotinJwecande neasystem~ufoni;J.Forinstanceif~tisaL-systemwede ne~t(ib)tobetheconditionsa =t (ib)for independentofianda =t (ib)if(ib) isinL.Thisisasy

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Variation on cubical sets" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Ifwehaveconnectionsandnotdiagonal,wecannowdescribeamorphismI!JasamapI!D(J)whereD(J)isthefreedistributivelatticeonJandtwodistinctelementsofIaresenttoelementofdisjointsupport.Ifwetakeawaythedisjointsupportrestrictionweaddthediagonaloperation.Allthishasstillageometricinterpretationwithmaxandminoperationson[0;1].Finallywecanalsoaddanoperationcorrespondingto1�xon[0;1]byreplacingdistributivelatticebydeMorganalgebra.ToaddconnectionsallowstoreducetheKan llingoperationtotheKancompositionoperation.Thisholdsprovidedwehaveregularity(aliftingofaconstantpathisconstant).2SemanticsTypesareinterpretedby(covariant)presheavesoverthefollowingcategory.Theobjectsare nitesets(of\symbols")andamapI!JisasettheoreticmapI!dM(J)wheredM(J)isthefreedeMorganalgebraonJ.AdeMorganalgebraisadistributivelatticewithanoperation1�xwhichsatis es1�0=01�1=01�(x_y)=(1�x)^(1�y)1�(x^y)=(1�x)_(1�y)(Thedi erencewithBooleanalgebrasisthatwedonotrequireneitherx^(1�x)=0norx_(1�x)=1.)Thereisa\nominal"descriptionofacovariantpresheafoverthiscategory.Wehaveasetofelementsuwhichmaydependsona nitesetofsymbolsu(i1;:::;in)andwecandosubstitutions,replacingi1;:::;inbyelementsindM(J)foranyJ=j1;:::;jm.IfwerestrictourselvestomapsI!dM(J)whichsendsdistinctsymbolstoelementswithdisjointsupport,wegetthenotionofcubicalsetswithconnections.IfweconsiderarbitrarymapsI!dM(J)weallowinparticulartohavethemapi=jwhichcorrespondstorestrictiontoadiagonal.Aparticularoperationthatwecandoonanelementu=u(i;j;k)istoreplaceiby0or1.Wewrite(ib)thisoperationforb=0;1sothatu(i0)=u(0;j;k)forinstance.Thiscorrespondstorestrictiontoafaceofu.3RemarksonthebasecategoryThebasecategoryChasforobjects nitesetsofsymbolsI;J;K;:::andamorphismI!JisamapI!dM(J).Atypewillbeinterpretedasa(covariant)presheafonC,whileatypeA`IdependingonsymbolsinIisinterpretedbyapresheafonInC.ThatissuchatypeisafamilyofsetsAfforf:I!JwithrestrictionmapsAf!Afgu7�!ugforg:J!K.Wesaythatamapf:I!Jisstrictififisneither0nor1foralliinI.Onekeyremarkisthefollowing.Lemma3.1Iff:I!Jisstrictand indM(I)suchthat f=b(wherebis0or1)then =b.ThisdoesnotholdforBooleanalgebra.Forinstancethemap(i=j):fi;jg!fjgisstrictand(i^(1�j))(i=j)=0buti^(1�j)isneither0nor1.Eachfacemap :I!I isepi.Iff:I!Jwewritef6 tomeanthatthereexistsamapf0(uniquelydetermined)suchthatf= f0.Thismeansthatif=i foralliinthedomainof .Corollary3.2Iffg6 andgisstrictthenf6 .WeconsiderthepartialmeetsemilatticeMgeneratedbythefaceoperations(ib).AnelementofMcanbethoughtasa nitesequenceoftheform(i0)(j1)(k0):::.Wedenoteby ; ;:::anelementofM.InparticularMcontainstheemptysequence1M.ThereisacanonicalpartialorderonMand2 IfwehaveaL-system~uoni;Iandwehaveamapf:I!dM(J)withinotinJwecande neasystem~ufoni;J.Forinstanceif~tisaL-systemwede ne~t(ib)tobetheconditionsa =t (ib)for independentofianda =t (ib)if(ib) isinL.ThisisasystemofA(ib).Foranotherexample,ifweconsiderthesystemai0;ai1andthesubstitutioni=i^jweobtainthesystembi0=ai0;bj0=ai0;b(i1);(j1)=ai1.Hereisanexample(duetoGeorgesGonthier)whichshowstheproblemifweuseaBooleanalgebrainsteadofadeMorganalgebra.Considerthesystemu(i0)=ai0.Ifwetakei=j^kthesystembecomesu(j0)=ai0;u(k0)=ai0.Ifwethentakek=1�jwegetu(j0)=ai0;u(j1)=ai0.Butifwetakedirectlyi=j^(1�j)=0thenwegetthesystemu=ai0instead.Sothereisacoherenceproblem.AnelementainAiscompatiblewithorsatis estheJ-system~uifwehavea =u forall inJ.Wecanthenconsideratobeasolutionoftheconstraintsde nedby~u.Weonlyhaveoneoperation(0;1playsasymmetricrole)compiA;~u(ai0):A(i1)whereLisindependentofiandwhereai0:A(i0)isanelementindependentofiandsatisfyingtheL-system~u(i0)andwhichproducesanelementsatisfyingtheL-system~u(i1).Thesymboliisboundinthisoperation(butimayoccurinAandu ).ThisoperationshouldberegularinthesensethatcompiA;~u(ai0)=ai0wheneverA;~uisindependentofi.Fromthisoperationwecande ne~a= lliA;~u(ai0)=compjA(i^j);~u(i^j)(ai0)elementoftypeAwhichsatis es~a(i0)=ai0byregularityand~a =u (i^j)(j1)=u .Theuniformityconditionwhichisrequiredisthatwehaveiff:I!dM(J)andIcontainsthefreesymbolsofcompiA;~u(ai0)compiA;~u(ai0)f=compjAg;~ug(ai0f)whereg:I;i!dM(J;j)isanyextensionoffwithg(i)=jnotinJ(whichre ectsthatiisboundinthisoperationandai0isindependentofi).Lemma4.1IfwehaveaL-systemt ofAandai0inA(i0)andbothuandvinAsatisfyu =v =t u(i0)=v(i0)=ai0thenthereisaL-pathbetweenu(i1)andv(i1).Proof.Weintroduceafreshsymboljandde neaL;(j0);(j1)-system~wbytakingw =t andwj0=uandwj1=v.WecanthenconsidercompiA;~w(ai0)whichisaL-pathbetweenu(i1)andv(i1). Hereisaspecialcaseofthecompositionoperationwhichwillbeconvenient.Lemma4.2GivenatypeAandainAandaL-systemof\lines"t :a !u inA,thereexistsa0inAsuchthata0 =u forall inL.Proof.Letibeafreshsymbol.Wecande nea0=compiA;~v(a)wherev =t i,sothatv (i0)=a andv (i1)=u . Wewritea0=comp(~t;a).Noticethat,byregularity,wehavecomp(~t;a)=aifalllinest areconstant.5ContractibletypesAtypeAiscontractiblei wecansolveinanuniformwayanyL-systeminA.ForinstancethefreeBooleanalgebraonthesetofsymbolsiscontractible.Thisfollowsfromthefactthatthereisexactlyonewayto llacubegivenitscorner.Forinstance,sincewehavea=(1�i)a(i0)+ia(i1)anylineu:u0!iu1hastobeu=(1�i)u0+iu1.4 7RepresentationofcubicalsetsIfwehaveawell-foundedsetX,wede newhatisaX-set.ThisisinductivelygivenbyafamilyofpredicatesA for inXwhereA isaset-valuedpredicateonthesetofsequencesa ; suchthata isinA (a ) .ToagivenX-setA wecanassociatethesetTofsequences(a )suchthata isinA (a ) .IfweletT bethesetofsequencesa ; suchthata isinA (a ) ,thenA isafamilyofsetsoverT .WealsohaveacanonicalrestrictionmapT!T forall inXandT !T if .ForinstanceifXistheordinal012thenaX-setconsistsinasetA0withafamilyofsetsA1overA0andafamilyofsetsA2(a0;a1)fora0inA0anda1inA1(a0).ItalsocanbenoticedthatX-setsforminanaturalwayamodeloftypetheorywith;anduniverses.Forinstance,forX=01wegetthemodelwhereatypeisinterpretedbyasetA0togetherwithafamilyofsetsA1(a0).LetXIbethe nite(andhencewell-founded)posetoffaceoperationsonI.IfforinstanceI=i;jthenaXIsetconsistsin4setsAib;jc,andset-valuedrelationsAib(xib;j0;xib;j1)andAjc(xi0;jc;xi1;jc)andarelationA1(xi0;j0;xi0;j1;xi1;j0;xi1;j1;xi0;xi1;xj0;xj1).WeshallwritesimplyI-setsinsteadofXI-sets.Were nethesemanticsofaclosedtypeA`I.ItisgivenbyafamilyofsetsAfforf:I!JandrestrictionmapsAf!Afgifg:J!K.WerequireAftobeaJ-set,andAf!Afgisthecanonicalrestrictionmapifgisafacemap :J!J .Itcanbecheckedthatalltype-formingoperationsproduceobjectsofthisform.ForinstanceifFandGareanypresheavesonCthenGF(I)isasetofsequencesfinF(J)!G(J)forf:I!J,satisfyingthecondition(fu)g=fgug,andthishasanaturalstructureofI-set.Wede nethefollowingoperationonI-sets.LetAbeaI-setandT beaL-systemofI -sets,withcompatiblemaps :T !A .ThenwecanconsidertheI-set(~T;A),theelementofwhicharesequences(u )whereu isinT if 6LandinA otherwise.Forinstance,ifI=iandAisgivenbyAi0;Ai1;A1andwehavei0:Ti0!Ai0then(~T;A)isthesetofsequences(ti0;ai1;a1)suchthata1isinA1(i0ti0;ai1).Itisnaturaltowritetheelementsontheform(~t;a).Thekeyremarkisthenthatifeach istheidentitymapwehave(~T;A)=Aandwehave(~t;a)=aifwetaket =a .Thisbasicoperationwillbeusedtode neglueing(whichtransformsequivalencetoequality)andthecompositionoperationintheuniverse.Ineachcase,wewillgetthesameunderlyingtypeifallmapsareidentities.Inthecaseofglueinghowever,theKancompositionoperationsdoesnotneedtostaythesame,whileitwillbethesameforcomposition,whichensuresregularityforcompositionintheuniverse.IfwehaveB=(~T;A)thenthereisacanonicalmapofI-sets:B!A.Forinstance,ifI=iandAisgivenbyAi0;Ai1;A1andwehavei0:Ti0!Ai0thenBisthesetofsequences(ti0;ai1;a1)suchthata1isinA1(i0ti0;ai1)andwede ne(ti0;ai1;a1)=(i0ti0;ai1;a1).8GlueingoperationInordertointerpretunivalenceweexplainhowtotransformanequivalencetoanequality.GivenaL-system~TinUandatypeAtogetherwithacompatiblesystemofequivalences :T !A ,wede neanewtypeB=glue(~T;A;~)AsacubicalsetBis(~T;A).Anelementofthistypeisoftheform(~t;a)witht :T anda:Asuchthata = t .IfL=f1Mg,wehaveonlyoneequivalence1:T1!AandwetakeB=T1.IfLisemptywetakeB=A.Iff:I!Jwede neBf=glue(~Tf;Af;~f)Ifwehaveoneequivalence:T!A,thenintroducingafreshsymboli,wehaveA=A(i0)andB=glue(Ti0;A;i0)withTi0=Tandi0=.ThistypeBwillbesuchthatB(i0)=TandB(i1)=A(i1)=A.Sowehaveanoperationtransforminganequivalencetoanequality.(Weareonly6 Proof.Wede neaL-systeminEe = lljE (t )andei0= lljE(i0)(ti0)sothate (j0)=t e (j1)=a ei0(j0)=ti0ei0(j1)=ai0Ifei1=compiE;~e(ei0)wealsohaveei1(j0)=ti1andei1(j1)=ai1.Wede nee0i1= lljE(ti1)sothate0i1(j0)=ti1ande0i1(j1)=(i1)ti1.Ifkisafreshsymbol,wetakeuk0=e0i1anduk1=ei1and~ai1=compjE(i1);~u(ti1)Wehavethen~ai1(k0)=(i1)ti1and~ai1(k1)=ai1.FurthermoreifEisindependentofjthene0i1=ti1byregularity.Wehavee =t ei0=ti0aswellbyregularity,sothatei1=ti1.Itfollowsthat~ai1=ti1alsobyregularity. Asforglueing,wede neanelementofBtobeoftheform(~t;a)withainAandt inT suchthat t =a .TheoperationcompiB;~v(vi0)isalmostthesameasforglueing.We rstbuilda andai0andai1=compiA;~a(ai0).Thedi erenceisinthe rststep.For inL0,wecanconsiderinthetypeT (i1)ti1=compiT ;~v (vi0 )Webuildaline (i1)ti1!ai1 notbyusingLemma4.1butbybuildingdirectlyalinebetweenti1andai1 byusingLemma9.1.ThislinereducesthentoaconstantifE isindependentofj.10IdentitytypeTheKanoperationforidentitytypeissimilartotheonein[1].11FunctionextensionalityGivenf;goftypeAFandpsuchthatpu:fu!guwecomputeext(i;p):f!igforafreshi.Thisamountstode neext(';p):AFforadeMorganformula'.Sincewedon'thavelinearitycondition,wede neext(';p)u=pu'.12Propositionaltruncation13OperationalsemanticsWelimitourselvestothedescriptionofthesystemwithoutuniverses.Thepointistoexplainhowwecanjustifyfunctionextensionalitywithoutusingfunctionextensionalityatthemetalevel.Thesyntaxforthetermsist;A;F::=xjttjx:tjIdAttjAFjhiitjcompiA;~t(t)jexttttj'where'representsanelementinthefreedeMorganalgebraonthesymbols.Inthissyntax,hiitrepresentsthepathabstractionoperation,andbindsthesymboli.Similarly,compiA;~t(t)representsKancomposition;itbindsthesymboliand~trepresentsasystemofterms.Forinstance~tmaybeoftheformtj0;tj1oroftheformtj0;tk0;t(j1)(k1).Itmayalsobeempty,inwhichcasewewritesimplycompiA(t).Wehavetheusual -reductionrule(x:t)u=t(x=u)8 WecantheninterprettheusualJeliminationrule.Becauseoftheregularitycondition,thecompu-tationruleforJisinterpretedasajudgementalequality.Wecanaddt;A;F::=Njzerojs(t)jnatrecFttwiththeusualcomputationrulesnatrecFafzero=anatrecFafs(n)=fn(natrecFafn)ThecomputationrulesforcompiN;~u(ui0)arethefollowing.FirstwehavecompiN;~u(ui0)=zeroifui0=zeroand~uistheconstantsystemu =zero.SecondwehavecompiN;~u(ui0)=s(compiN;~v(vi0))ifui0=s(vi0)andu =s(v ).14TypingrulesWehavejudgementoftheforms�`I;�`I`Aand�`It:Arelativizedata\level"( nitesetofsymbols)I.TherulesaretheusualrulesoftypetheoryatalllevelsI,withtherestrictionrule�`It:A �f`Jtf:Afiff:I!dM(J).Thenewrulesarethenthefollowing.�`I�`I;iA�`Iai0:A(i0)� `I ;iu :A �`compiA~u(ai0):A(i1)withI =I�dom( ).Wealsohave�`IA�`Ia0:A�`Ia1:A �`IIdAa0a1�`IA�`Ia0:A�`Ia1:A�`I;it:A�`It(i0)=a0:A�`It(i1)=a1:A �`Ihiit:IdAa0a1Inparticular,wegetthere exivityproofofa:Abyde ningreflaastheconstantpathfunctionhiia�`It:IdAa0a1 �`I;iti:A�`It:(x:A)!B�`Iu:(x:A)!B�`Ip:(x:A)!IdB(tx)(ux) �`Iexttup:Id((x:A)!B)tu15GeneralremarksaboutthemodelThe rstremarkisthatallpathsinNareconstant,asexpected.Proposition15.1Iisthepresheafde nedbyI(J)=dM(J)andNistheconstantpresheafN(J)=N.AnynaturaltransformationI!NisconstantandisdeterminedbytheimageofibythemapI(fig)!N.10