PDF-isthe\sumofsquaresofx"andSyy=nXi=1(yy)2=nXi=1y2i1
Author : bety | Published Date : 2021-01-05
n nXi1yi2isthesumofsquaresofyThevalueofrxyisalwayssuchthat0120rxy201Weonlyobtainrxy61ifthepointsonascatterplotlieexactlyalongastraightlineNote1Noneofthisimpliescausality2Wecanca
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "isthe\sumofsquaresofx"andSyy=nXi=1(y..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
isthe\sumofsquaresofx"andSyy=nXi=1(yy)2=nXi=1y2i1: Transcript
n nXi1yi2isthesumofsquaresofyThevalueofrxyisalwayssuchthat0120rxy201Weonlyobtainrxy61ifthepointsonascatterplotlieexactlyalongastraightlineNote1Noneofthisimpliescausality2Wecanca. EveryvectorinS0canbewrittenasalinearcombinationofthebasisvectorsofS0:=nXi=1ii:(2)UsingEq.(1),weobtaing=nXj=1nXi=1Dji(g)ij:(3)Fromthisresult,weseethatwecanconsidergtooperateonthecoecientsirat case:E[s2]=E[1 NNXi=1(xi x)2]=1 x+NXi=1 x2]WeknowPNi=1xi=N xandPNi=1 x2=N x2.Plugtheseintothederivation:E[s2]=1 NE[NXi=1x2i 2N x2+N x2]=1 NE[NXi=1x2i N x2]=1 NE[NXi=1x2i] E[ x2]=E[x2] E[ x2]Acco TondthemeanofS2,webeginwiththeidentitynXi=1(Xi )2=nXi=1((Xi X)+(X ))2=nXi=1(Xi X)2+nXi=1(Xi X)(X )+n(X )2=nXi=1(Xi X)2+n(X )2Then,ES2=E"1 nnXi=1(Xi )2 (X )2#=1 nn2 1 n2=n 1 n2:This VariationofParameters,UseofaKnownSolutiontoFindAnotherandCauchy-EulerEquationDepartmentofMathematicsIITGuwahati SU/KSK MA-102(2018) VariationofParameters,UseofaKnownSolutiontoFindAnotherandCauchy-Eule arecalledtheSupportVectorsinourproblem.withminimizingoverbandtonLagrangian(@L(t;b;a;u;v;) @b=PNi=1uiPMi=1vi=0@L(t;b;a;u;v;) @t=1+PNi=1ui+PMi=1vi=0yieldstheconditions1u=1=2;1& PeterBartlett 1 Overview AdaBoost Coordinatedescentwithotherlosses. Dualproblem:maximumentropy/I-projection. AdaBoostisiterativeprojectionmethod. Weaklylearnable,infeasible. UnnormalizedKLprojection @0= 2Pni=11Yi (0+1xi)]@S @1= 2Pni=11Yi (0+1xi)]xi(2.3)Whencomparedtozeroweobtainsocallednormalequations:8:Pni=1(b0+b1xi)=Pni=1YiPni=1(b0+b1xi)xi=Pni=1xiYi(2.4)Thissetofequationscanbewrittena yb1 x(Note: y=1 nPni=1yiand x=1 nPni=1xi.)Proof:Ignoringthesecondnormalequation,startbydividingtherstnormalequationbyn:1 nnXi=1yi=b0+b1 nnXi=1xi:Rearrangingthisequation,andnotingthat y=1 nPni span(f(X))!XsuchthatkTk=1andT(f(x))=xforeveryx2X.Thus,whenviewedasmetricspacesintheisometriccategory,Banachspacesarehighlyrigid:theirlinearstructureiscompletelypreservedunderisometries,and,infact,isom 1IntroductionThislecturemainlyfocusesondimensionreduction:Johnson-LinderstraussLemmaandespeciallyitsdistributionalversion.Chi-squareddistributionisintroducedwhenthereisasumofGaussiandistributedvariabl AaronDefazioAmbiataAustralianNationalUniversity,CanberraFrancisBachINRIA-SierraProject-Team´EcoleNormaleSup´erieure,Paris,FranceSimonLacoste-JulienINRIA-SierraProject-Team´EcoleNormaleSup´erie UnderjointGaussianassumptionsweknowthatKalmansmoothingisequivalentto12ndingtheMaximumAPosterioriMAPestimatorforthestatesgiventhewholeobservationsHoweverhowdoesthisfactalgebraicallyplayoutWhatifthevari CONTENTSCONTENTSContents1Introduction12Killingtensors221IsometriesandtheLiederivative222Killingvectorsandtensors423TheLieandsynmmetricSchouten21Nijenhuisbrackets624Conservationlawsforparticles925Conse w1w218w1w2X1nXi3wiXi19w2w1w218w1w2X2nXi3wiXi192120w1w1w2E20f18w1w2X1nXi3wiXi1921w2w1w2E20f18w1w2X2nXi3wiXi19219wheretheinequalityholdsbyconvexityoffBysymmetrywehaveEf w1w2X1nXi3wiXiEf w1w2X2nXi3wiXi10
Download Document
Here is the link to download the presentation.
"isthe\sumofsquaresofx"andSyy=nXi=1(yy)2=nXi=1y2i1"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents