/
Chapter 16 and 17-Part 1 Chapter 16 and 17-Part 1

Chapter 16 and 17-Part 1 - PowerPoint Presentation

briana-ranney
briana-ranney . @briana-ranney
Follow
419 views
Uploaded On 2016-07-17

Chapter 16 and 17-Part 1 - PPT Presentation

Before talking about organic chemicals essential to our lives lets review isomerism Isomers are 2 or more compounds with the same molecular formula but different structures or shapes The most common are what are called structural isomers There are 2 structural isomers of C ID: 407627

fats glucose oils called glucose fats called oils cholesterol form molecules animals isomers fatty fat blood enantiomers acids saturated high sugar trans

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Chapter 16 and 17-Part 1" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Chapter 16 and 17-Part 1Slide2

Before talking about organic chemicals essential to our lives, let’s review isomerism.

Isomers

are 2 or more compounds with the same molecular formula but different structures or shapes. The most common are what are called structural isomers. There are 2 structural isomers of C

4H10 Slide3

There are also isomers that are called stereoisomers, an isomer because of the position or orientation in space of the atoms in the molecule, such as cis and trans isomers.

The specific type of stereoisomers that I want to discuss now can be understood by looking at your hands. They look the same, but try to put one on top of the other so that they are identically oriented (this is called superimposing one on the other). You can’t. But if you put one facing the other, like looking in a mirror, they match. They are mirror images of each other.Slide4

In chemistry, if you have 2 molecules that are identical in all respects, including many physical and chemical properties, molecular formulas, bonding and one is the mirror image of the other, but not superimposable, they are called

enantiomers

or

mirror image isomersSlide5

In order to have enantiomers, there must be at least one C atom in the molecule that is bonded to 4 different atoms or groups (for this test a methyl group is different than an ethyl group. One example

Look at the second C from the left. It has 4 different groups bonded to it (CH

3

, OH, H, and COOH). This is called an

asymmetrical

or

chiral

C atom. Mirror images of compounds with one or more chiral C atoms are not superimposable and are therefore enantiomers.Slide6

Sometimes (rarely, however) both forms of an enantiomer are naturally found in nature, The above is an example (lactic acid). One form is produced when milk sours (The odor of sour milk is caused by this) and the other form is produced in our bodies when muscles contract.

Most biochemical molecules are enantiomers and almost always only one form is produced. Frequently, if the other form is introduced into the body, it will have no effect or a completely different and perhaps dangerous effect. Also, many drugs and nutrients or food additives are enantiomers, but only one form has the effect we wantSlide7

Nutrasweet (chemically named aspartame) is sweet in one form and bitter in the other form.

A drug introduced in the early 60’s, thalidomide, to offset morning sickness in pregnant women, had disastrous results. When made in the lab, both enantiomers were produced in equal amounts(because of their nearly identical chemical properties, except when reacting with other enantiomers). One form harmlessly aided morning sickness, but the other form (discovered after the fact and too late) caused major birth defects, most commonly being born with missing limbs or appendages).Slide8

There are 3 main food types that we will discuss:

1.

Carbohydrates -

Naturally occurring substances that are sugar molecules or polymers of sugar molecules. They all contain several C-OH bonds plus one C=O bond, hence we say they

are all

polyhydroxide

aldehydes or ketones. The most important carbohydrate is glucose. We further classify carbohydrates as:Slide9

a)

Monosaccharide

– Simple sugar that cannot be decomposed into a smaller carbohydrate.

b)

Disaccharide

– Carbohydrate composed of 2 monosaccharide molecules bonded together.

c)

Polysaccharide

– Carbohydrate composed of more than 3 monosaccharides bonded together, usually hundreds or thousands.Slide10

All carbohydrates have enantiomeric forms, only one of which is biochemically active. Besides glucose, the other important simple sugars are galactose and fructose. Both of these are structural isomers of glucose, all with the formula C

6

H

12O6. Glucose is also called dextrose, blood sugar and sometimes grape sugar. It is commonly found in fruit and is an absolutely essential chemical in all living cells. The “burning” of glucose in the cells provides energy needed by living organisms to survive.Slide11

16_03.JPGSlide12
Slide13

The most common disaccharides are:

Sucrose

– From glucose and fructose – Also known as ordinary table sugar.

Maltose

– From 2 glucose molecules – Found in grains and used as a sweetener in many prepared foods.

Lactose

– From galactose and glucose – Found in milk

All of these are structural isomers with the formula C

12

H

22

O

11

. All are decomposed in living animals and converted to glucose in living animals, during digestion. The breakdown is called

hydrolysis

and is aided by catalysts called

enzymes.Slide14
Slide15

The most common polysacharrides are all formed from glucose. The most common are:

Starches –

Giant molecules used to store glucose in plants

Glycogen

– Very large molecules used to store glucose in animals, most prevalently in muscles and the liver. In muscles to provide energy in quick response to need or in the liver to replace glucose that has been removed from the blood since all blood passes through the liver.

In starches and glycogen the glucose molecules are bonded in a way we call alpha-bonding (or simply, using

-glucose)Slide16

Cellulose –

The structural material of cell walls in plants. Formed from a different way of bonding glucose together, called beta-bonding (or simply, using

-glucose).

In order for animals to use polysaccharides, they must decompose them into glucose. Some animals, humans being one, can only decompose starch or glucose, because they can only react with

-bonding.

Other animals, cows for example, can decompose (digest) cellulose. Grasses are primarily cellulose, hence the grazing animals.Slide17

16_06.JPGSlide18

The primary purpose of carbohydrates in animal diets is to provide energy for all the other biochemical processes.Slide19

2.

Fats & Oils

are the 2

nd type of food for animals. They belong to a larger class of compounds called Lipids, which also include steroids & waxes. All lipids are insoluble in water and soluble in organic solvents.Fats & Oils are basically the same type of chemical. They are all esters formed by the reaction of the tri-alcohol, glycerol (or more commonly,

glycerin) with long chained carboxylic acids, called fatty acids. All fatty acids found in nature have an even # of C atoms, ranging between 8 and 20. Some have one or more C=C double bonds.Slide20
Slide21

The difference between fats and oils is that fats are solid at room temperature and oils are liquid at room temperature. In most cases, fats are found in

animals

while oils are found in

plants. All fats and oils are mixtures containing different fat molecules. Also, each fat molecule is composed of different combinations of fatty acids. In most cases, fats have a high concentration of saturated fatty acids (no C=C double bonds), while oils have a high concentration of unsaturated fatty acids. There are exceptionsSlide22
Slide23

Oils can be artificially saturated by adding hydrogen chemically, thus producing a solid fat (vegetable shortenings and margarine)

TRANS FATS Controversy:

When oils saturated; still some C=C double bonds left

For years, process yielded random cis and trans bonds. We now call those trans fatsSlide24

Trans fats have recently been shown to be potentially harmful to our health

New processes of saturating oils have been developed to produce only cis arrangement, which is what is found in nature.

Many health professionals consider natural fats high in saturated fats healthier than those artificiallly produced with trans arrangements.Slide25

17_07.JPG

Saturated fatSlide26

Fats and oils are converted to human fat in our bodies and provide insulation, cushioning and when necessary can be metabolized (burned) to produce energy.

Fats are also called

triglyceridesSlide27

Soap

Brief History 1. First mentioned for cleansing by Babylonians around 4000 years ago 2. Used in various places, especially Europe and the Middle East, on and off since then. 3. Probably didn’t become universally used for cleaning until late 19th century 4. Same process for making soap used until quite recently.Slide28

Simple Soap

How to make it:

a. Fat plus a strong base (most commonly,

NaOH, or lye.b. Produces a salt of the fatty acid (ionic compound)c. Uniqueness of this ionic compound (ionic end plus long chain hydrocarbon (the R of the fatty acid)Slide29
Slide30

2. How we get dirty.

a. Skin oils b. Surface dirt versus imbedded dirt

3. How soap cleans a. Why not plain water b. Polar vs non-polar ends of soap molecule

c. Mixing polar water with non-polar skin oils d. VOILA!! Slide31

Steroids

are very important chemicals. Probably the most famous is cholesterol. All are based on the same basic structure. See page 547 in your book. We

may discuss

steroids in more detail later, but for now we are interested in cholesterol. Slide32

Saturated fats have been long believed to be a significant factor in a disease called arteriosclerosis or hardening of the arteries. In this condition, deposits form on the walls of arteries (which carry blood from the heart to all the other parts of the body. Eventually these deposits harden (hence the name hardening of the arteries) and the vessels become less flexible. Blood clots tend to develop and stick to these deposits leading to blockage of the arteries and to heart attacks or strokes. Slide33

The plaque (the hard deposits in the arteries) are high in cholesterol. It is believed that high levels of cholesterol and triglycerides in the blood are a major factor contributing to cardiovascular disease, primarily arteriosclerosis. Fats and cholesterol are insoluble in water. Water soluble proteins help transport them through the blood. This cholesterol-protein or fat-protein combo is called a

lipoprotein

. Slide34

Very low density lipoproteins (VLDL) and low density lipoproteins (LDL) are the main transporters of triglycerides and cholesterol through the body.

These are frequently referred to as bad cholesterol, because they keep cholesterol and triglycerides in the bloodstream. High

density lipoproteins (HDL) also transport cholesterol, but mainly to the liver from where it excreted from the body. This is frequently called the good cholesterol, because it actually leads to lower cholesterol levels in the body.