/
Deniable Liaisons Abhinav Narain Nick Feamster Alex C Deniable Liaisons Abhinav Narain Nick Feamster Alex C

Deniable Liaisons Abhinav Narain Nick Feamster Alex C - PDF document

briana-ranney
briana-ranney . @briana-ranney
Follow
428 views
Uploaded On 2015-05-27

Deniable Liaisons Abhinav Narain Nick Feamster Alex C - PPT Presentation

Snoeren Georgia Tech UC San Diego nabhinavfeamster ccgatechedu snoerencsucsdedu Abstract People sometimes need to communicate directly with one another while concealing the communication itself Existing systems can allow users to achieve this level ID: 75606

Snoeren Georgia Tech

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Deniable Liaisons Abhinav Narain Nick Fe..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

astheyrequirethesendertoretransmittheoriginalframe;yet,inourcase,theyprovideanopportunitytohidecommunications.DenaLicreatesspuriouscorruptframesbyinjectingcovertmessagesintoframescarryingcovertrafcdirectedtowardinnocuousdestinations.Sincetheseframesareindeedcorrupt,theywillnotbeforwardedbytheaccesspointtotheirapparentdestination.Instead,othernodesintheWiFinetworkthatoverheartheframeandpossestheappropriatesecretkeycanextractanddecrypttheinjectedpayload.DenaLiisconceptuallysimple,andachievinganonymityandcon-dentialityiseasyenough—anyreasonableencryptiontechniquewillsufce.Thechallengesentaildesigningthecommunicationschannelsothattheresultingstreamofcorruptedframesisdeniable,whichrequiresbothunderstanding(andmodeling)thepropertiesofbiterrorsinan802.11wirelesscommunicationschannelandappro-priatelymodelingtheattacker.Todoso,webuildonpreviousworkthatstudiesbit-errorcharacteristicsinthewirelessmedium,andper-formourownmeasurementstounderstandtheseerrorcharacteristicsinvarioussettingsandfordifferentencodings.Wedevelopamodi-ed802.11wirelessdriverthatmodulatesthecovertmessageoverastreamofcovertrafcinsuchawaythattheresultingsequenceofcorruptedframesmimicstheexistingpatternofcorruptioninthewirelesschannel.DenaLitrafcmatchesnaturallyoccurringwire-lesscorruptionbothintermsofthefrequencyofcorruptedframesandthebitpositionswithintheframesthatarecorrupted.DenaLiprovidesdeniabilityinasettingwhereanadversarycanobservewirelesscommunicationsinthelocalarea,butcannotgetveryclosetothesuspectedsender.Anadversarywhoobservestrans-missionssufcientlyclosetothesendercouldinferthepresenceofahiddenmessagechannelduetothe(relatively)highlevelofpacketcorruptionnearthepointoftransmission.Weenvisionthatintypicalcasesanadversarywouldnotbetargetinganindividualsenderbutwouldratheronlybeinapositiontomonitoragroupofusers(e.g.,inthemidstofalargergroup,perhapsclosetotheaccesspoint).Inthesecases,wedemonstratethroughempiricalmeasurementsthatdistinguishingDenaLitransmissionsfromnat-urallyoccurringcorruptedwirelessframescanbemadearbitrarilydifcultformessageratesthatcaneasilysupporttheexchangeofshortcovertmessages.Weshowthroughextensivecontrolledexper-imentswithrealwirelesschipsetsthatwhenwecloselymatchtheframeerrorrateandbiterrordistributionsoftheexistingwirelesschannel,DenaLiachievesabiterrordistributionpatternthatisindis-tinguishablefromnaturallyoccurringerrors.Toachievethislevelofdeniability,throughputisquitelow(sufcientforexchangingonlysmallmessagesor“tweets”),butthesendercan,ofcourse,acceptlessdeniabilityinexchangeforhigherthroughput,atradeoffthatweexploreinourevaluation.Trafcthattheuserisalreadysendingaspartofnormalcommunicationcanprovidethenecessarycovertrafc,whichmeansthatDenaLidoesnotneedtocreateadditionalcovertrafcbutcanratherhideitsmessagesintheuser'sexistingtrafc.Ourworkpresentsseveralcontributions.First,werecognizethattheincreasingneedforanonymous,deniablecommunicationsinsettingswherepartiesarephysicallyclosetooneanothercallsforanewclassofcommunicationstools.Second,weobservethatinthesesettings,theubiquityofotherWiFicommunication(andthecorrespondingwirelessframecorruption)canserveasusefulcovertoconcealcommunications.Third,wedenethenotionofdeniabilityinthiscontextanddesignamodulationschemethatachievesdeniabilitybymatchingthecorruptionpropertiesofthedeniablemessagestothatofthecovertrafc.Finally,weimplementandevaluateaprototypesystembasedonthisdesign.Therestofthepaperproceedsasfollows.Section2surveysrelatedworkinanonymouscommunication,detectionofcovertchannels,andwirelesserrorsandcorruption.Section3denesourexpectedusagescenarioandoutlinesourbasicapproach,threatmodel,anddesigngoals.Section4describesthedesignoftheDenaLicommunicationchannelindetail.Section5describesourprototypeimplementationsandexplainsthechangeswemadetothewirelessdrivertoenableDenaLi.WeevaluateDenaLiinSection6,discusslimitationsandfutureworkinSection7,andconcludeinSection8.2RelatedWorkWerstsurveyrelatedworkonrelatedanonymousanddeniablecommunicationssystems.Wethendiscussvariousstudiesofwire-lessinterferenceandchannelpropertiestodesignDenaLi.2.1AnonymousCommunicationsDenaLi'sdesignisinspiredbyRivest'sproposalforchafngandwinnowing,wherebyasenderdisguisestherealmessageintendedfortherecipientbyincludingadditional“chaff”onthesamechan-nel[22].Withknowledgeofasharedsecret,therecipientcanidentifyanddiscardthechaff,leavingonlythemessageinquestion.UnlikeRivest,however,wefurtherencryptthemessagetomakeiteasiertoefcientlyinjectintothechaffwithoutdisturbingthestatisticalpropertiesoftheaggregate.DenaLiistherstsystemtoprovideapoint-to-pointdeniablecommunicationchannelinaWiFinetworkusingcommodityhard-ware.Previousworkhassketchedsystemsthatusecorruptedwire-lessframestocreateacovertchannelover802.11frames[19,25]butnopreviousworkhasmovedbeyondpaperdesigns.Calhounetal.designedandsimulatedacovertchannelbaseduponvaryingthelinkrate[2].Thisworkispurelysimulation-basedanddevelopsneitheraworkingprototypenoracommunicationprotocolforex-changingmessages.Noneofthepreviousworkanalyzesdeniabilityinthepresenceofanadversarythatcanmonitorchannelquality.Manyexistinganonymouscommunicationssystemsaimtopro-videvariouslevelsofanonymityinthewidearea.OneofthemostwidelyusedanonymouscommunicationssystemsisTor[7],whichallowscommunicatingpartiestoestablishanonymouscommuni-cationschannelsviaalayeredencryptiontechniquecalledonionrouting[10].UsersofTorestablishcircuitstocommunicatewitheachotheranonymouslyinthewide-area.Torprovidesanonymitybutnotdeniability,inthesensethatusersofTorcanconcealwhotheyaretalkingto,butnotthefactthattheyarecommunicatingusingTor(infact,Torisblockedinmanycountriesoutright).De-naLi'sfocusisdifferentthanTor's:itaimstoenableanonymousanddeniablecommunicationinsettingswherethecommunicatingpartiesarephysicallyclosetooneanother.DenaLibearssimilaritytoothercensorshipcircumventionsys-temsthataimtoachievedeniabilityandcovertnessinadditiontocondentialityandanonymity.TwosuchsystemsthatoperatefromendsystemsareInfranet[9]andCollage[1].Thesesystemsal-lowparticipantstoestablishcommunicationsunderthecoverofinnocuousWebtrafc:thecensoronlyseesWebrequeststhatarestatisticallyindistinguishablefromnormaluserbehavior,thuspro-vidingtheuserwithanimportantdegreeofdeniability,inadditiontocondentiality.OtherrecentsystemssuchasTelex[28],Cirri-pede[13],andDecoyRouting[15]aimtoachievesimilarlevelsofdeniabilitybydeployinginfrastructureinthecoreofthenetwork Figure4:Stepsinvolvedinexchangingmessagesusingcorruptedframes.framewherethemessageshouldbeinserted;and(3)computesanHMACoverthemessageciphertext.Thesendertheninsertsbitscorrespondingtothehiddenmessagelength,theHMAC,andthehiddenmessageitselfasablockintothecorruptedframe.WedescribetheprocessofcomputingtheframeoffsetandtheHMACbelow.Inadditiontothesessionkey,thesenderusestheTCPsequencenumberandacknowledgmentnumberassaltstocomputetheframeoffsetforthehiddenmessage.Doingsohelpsrandomizetheoffset,sothattheinsertedbitsarenotalwaysinthesamelocationinthecorruptedframe;randomizingtheoffsetmakesitdifcultforanadversarywhoiseavesdroppingtoascertainthepresenceofahiddenmessage,sincethelocationofthecorruptedbitsthatcontainthehiddenmessagewillbedifferentforeachpacket.Weconsideredusingapseudo-randomnumbergeneratorwithaninitialseedtoallowthesenderandreceivertocomputethisoffset;theproblemindoingsoisthatifanycorruptedframecontainingahiddenmessageislost,reordered,oritselfcorrupted,thereceiverandsenderwilllosesynchronization.Instead,DenaLiusestheoutputofapubliccryptographichashfunctionthatusestheTCPsequencenumber,acknowledgmentnumber,andsharedsecret(or,inthecaseoftheinitialkeyexchange,thereceiver'spublickey)astheinputforcomputingtheoffset.Thus,alloftheinformationthatthereceiverneedstoextractthehiddenmessagefromtheframeispresentintheframeitself.Unlesstheadversaryhasthesharedsecret,itcannotdeterminetheoffsetofthearticiallycorruptedburstsequence.Becausetheinjectedframeiscorrupt(i.e.,itslayer-twochecksumisinvalid),thereceivernolongerhasaninherentwaytodeterminetheintegrityoftheframe—or,morespecically,theembeddedDenaLimessagewithin—itreceives.Inlieuofthe(nowcorrupted)framechecksum,aDenaLisenderalsoincludesanHMACcomputedoverthehiddenmessagecontentsthatiskeyedonthesessionkey,theTCPsequencenumber,andtheacknowledgment.Themessage'sHMACisprependedtothehiddenmessagebeforetheresultingbitsareinsertedintotheframe.Theastutereadermightobservetwonuancesaboutthewaythatthesenderembedsthemessageintoacorruptedframe.First,themessagelengthisincluded“intheclear”.Includingthemessage Figure5:Checkingtheintegrityofreceivedhiddenmessages.lengthintheclearisnecessarybecausethenumberofbitscorre-spondingtothehiddenmessagevaries(bothbydesigntomakedetectionmoredifcult,andasanaturalresultoftheoriginalmes-sagesizes).Becauseboththevalueofthemessagelengthandtheoffsetwithintheframewherethebitsindicatingthemessagelengthvaryper-frame,recognizingapatternwouldbedifcult.Asendercould,ofcourse,introducemoreentropyintothemessagelengthvaluebyrandomizingtheblocksizeforeachblockthatitinjectsintoacorruptedframe,makingitessentiallyimpossibletoidentifythepresenceofthemessagelengthvalue,attheexpenseofchannelthroughput.Second,allofthecorruptedbitsareinjectedintotheframeasasingleblockratherthaninterspersedatrandombitlocationsthrough-putthepacket.Previousworkhasestablishedthatwirelessbiterrorstendtooccurascorruptedblocks[12],notasindividualcorruptedbits.Additionally,becausetheDenaLisenderinjectsciphertextintootherciphertext(i.e.,theSSLstreamthatservesasthechaff),interspersingtheblockthroughputthepacketdoesnotincreasecovertness:Becauseboththehiddenmessageandthechaffareen-crypted,theadversarycanseethattheframeiscorrupted,buthasnostraightforwardwayofdeterminingthebitpositionscorrespondingtothecorruption,unlesshehasthecorrespondinguncorruptedver-sionoftheframe.InjectinganencryptedmessageintoSSLpayloadmakesthelikelihoodofeverybittobecorruptedtobe0:5.ReceivinganddecodingToreceivethehiddenmessage,there-ceiverpollsthewirelessmediumforallthecorruptedframesandattemptstodecodeanddecryptthebitsineachcorruptedframethatarelocatedattheappropriateoffset,whichiscomputedasafunctionofboththesessionkeyandtheTCPsequencenumberandacknowledgmentnumbersinthepacketheader.Thereceivercanapplythesamefunctiontodeterminetheappropriateoffsetofthemessageinthecorruptedframetoextracttheciphertextanddecryptittorecoverthesessionkey,whichwillbeusedtoencryptfuturemessagesandasaninputforcomputingtheframeoffsets.Uponhearingacorruptedframeinthewirelessmedium,thereceiverextractsthegrainfromthechaffbycomputingtheoffsetwherethehiddenmessageisexpected(asafunctionofthekeyandtheTCPsequenceandacknowledgmentnumberscontainedintheframe)oneverycorruptedframe,extractingthebitsthatshould Figure6:Processingofan802.11wirelessframeatthehost,andthetwomodicationsthatwemaketoenableDenaLi:(1)settingthenumberofretransmissionstozerothroughtheSoftMACimplementation;(2)disablingtheframechecksumcomputationtoallowtheinterfacetotransmitthecorruptedframe.(andtheadversary)arelocated.Althoughtheinstantaneousframeerrorratecannotbemodeledpreciselybecausethetypeandfre-quencyofeventsthatcauseinterferenceorframelossareinherentlyrandom,wecancalculatetherateofcorruptionoftheframesinalivecaptureofacollectedpackettraceandattempttomimicthatdistribution.DenaLiusersmaintainstatisticsregardingthepacketerrorrateofnormalframessothattheycaninjectcorruptedframesinawaythatmimicsthenaturallyoccurringpacketcorruptioninthecurrentenvironment.Inchannelsthataresubjecttocorruptionratesthatarehigherormorevariable,DenaLiparticipantscaninjecthiddenmessageswithhigherfrequency.WeexploretherelationshipbetweentheamountofnoiseinthechannelandthethroughputthatwecanachievelaterinSection6.3.Thebiterrordistributionisthedistributionofthebiterrorsinspecicpositionswithinacorruptedframe.Anadversarywhocap-turestheframesmayanalyzethecorruptedframestocomparetheerrorpatterns.Wemodifythecontentsoftheintentionallycorruptedframeinsuchamannerthatitisdifculttodifferentiateactuallycorruptedbitsfromthecraftedcorruptedframe.Ourgoalistoinjectbiterrorsintopacketsinsuchawaythattheresultingdistributionofbiterrorsresemblesabit-errorpatternthatwouldresultfromthecor-ruptionofoneormoresymbolsinanencodedwirelesspacket.Theexactbit-errorpatternisdifculttomodelbecausethesepatternsdependonhowthesendermodulatespackets.Inlieuofconductingadditionalexperimentsonbiterrorratesourselves,wefollowtheassumptionsfromtheMaranellostudy[12],whichsuggeststhatthebiterrorsinaframeoccurinchunks,duetothelossofsyn-chronizationbetweenthesenderandreceiverortheburstynatureofinterferenceinthewirelesschannel,unlikeuniformcorruptionofbitsinthewholeframe.Inourevaluation,weuseDenaLitocorruptspecicbiterrorpatternsinsuchawaythatmimicstheseobserveddistributions.Wealsonotethatthefartherthatthesenderisfromtheadversary,themorelikelythattheadversarywillobservenaturallyoccurringframecorruption,whichshouldmakeitmoredifculttodistinguishnaturallyoccurringcorruptionfromarticialcorruption.6.2SecurityGoalThesecurityofDenaLirequiresthat:(1)sendingahiddenmes-sageusingDenaLicreatesaperturbationofthewirelesschannel'spacketerrorrateandbiterrordistributionthatisstatisticallyindistin-guishablefromifaDenaLimessagehadnotbeensent(deniability);(2)theadversarycannotrecoverthemessages(condentiality).AsthecondentialityofDenaLireliesonthestrengthofexistingen-cryptiontechnologies,wefocusondeningandevaluatingDenaLi'sdeniabilityproperties.Consideranadversarywhoobservesthepropertiesofthewirelesschannelfromaparticularlocation.Theadversarycanempiricallymeasureboththepacketerrorrateforasequenceofframes,andthebiterrordistributionswithineachcorruptedframe.SupposethattheadversaryhastwopackettracesPandP0,wherePisapackettracewithoutDenaLicommunicationandP0isatracewithDenaLicommunication.DeniabilitysaysthattheadversarycannotdeterminewhichtracehasDenaLicommunicationwithprobabilitygreaterthan1=2+e.Iftheadversarycancorrectlydetectthepres-enceofacovertchannelwithprobabilitygreaterthan1=2+e,thentheadversarywins.Similarly,supposealsothattheadversaryrunsamaximumlike-lihooddetectorbasedonobservationsofbiterrordistributionsincorruptedframestodetectthepresenceofaDenaLichannelbasedondeviationsintherespectivedistributions.Accordingtothedef-initionofdeniabilityabove,ifeiszero,thebestthresholdthatanadversarycoulddesignwouldbeunabletodistinguishthetwodistributionsofbiterrorpatternsdrawnfromPandP0.Theepa-rametermeasurestheextenttowhichthetwodistributionsdonotoverlap.Wequantifythedegreetowhichthetwodistributionsdonotoverlap(whichcorrespondstotheprobabilitythattheadver-sarysucceeds)usingthePearsoncorrelationcoefcientbetweenthetwodistributions[24].eissimplyhalftimesoneminusthecorrelationcoefcient.Formally,wedenotethebiterrordistribu-tionfrompackettraceP0asf0(x),wherexisthebitpositioninthepacket;similarly,thenormalbiterrordistributionfrompackettracePisf(x).Foreachofthedistributionsthatareparameterizedbyframeerrorrateandbytesinjectedperframe,wecomparethetwodistributionsasfollows:e=1=2�cov(f(x);f0(x)) 2sf(x)sf0(x)Notethatwecanmakeearbitrarilysmall:IfDenaLiinjectsnobitsfromthehiddenmessage,thenaturallyoccurringbiterrordistribu-tionisunperturbed,andthetwodistributionsareindistinguishable,bothbydenitionandbyconstruction.Suchachannel,ofcourse,isuselessbecauseitsthroughputiszero.Increasingthethroughputofthehiddenchannelbyinjectingadditionalcorruptedframesandintroducingbiterrorsthatdeviatefromthenaturallyoccurringbiterrorsperturbstheunderlyingdistribution.Thus,thereisatradeoffbetweenthedegreetowhichthebiterrordistributionisperturbed(i.e.,thenumberofbitsfromthehiddenmessagethatweinjectintoanycorruptedframe)andtheresultingthroughput.Thepacketerrorratealsohasanaturallyoccurringvaluethatvariesovertime.SupposethatforagiventimeintervaliinpackettraceP,theadversaryobservesapacketerrorratefi.Then,theadversarycanobserveadistributionF=ff1;f2;:::;fngandacor-respondingdistributionF0forpackettraceP0.WesaythatthepacketerrorrateinducedbyrunningDenaLiachievesdeniabilityiftheadversarycannotsucceedindistinguishingFandF0withaprobabilitygreaterthan1=2+e.Bydeningeaccordingtothe (a)Thebit-errordistributionfromtheperspectiveoftheDenaLisender,givena23KBmessageanda70-byteTUNMTU. (b)Naturalbiterrordistribution. (c)ThebiterrordistributionaftertheDenaLiperturbationfrom(a)isadded.Figure7:Bit-errordistributioninaninjectedDenaLiframeatthesender,andbiterrordistributionsasviewedatamonitor,withandwithoutinjectedDenaLiframes.distancebetweenthesetwodistributions,wecandeterminethenum-berofcorruptedpacketsthataDenaLisendercaninjectsubjecttoanupperboundone.Inprinciple,aDenaLisendercandetecttheaveragepacketerrorrateforsometimeintervalandtransmitcorruptedpacketsinawaythattracksthispacketerrorratewithinsomeboundofe.Forthepurposesofourevaluation,wehavexedthepacketerrorrate,butinpracticeitmightvary.Becausepacketcorruptionisalocalphenomenonthatiserraticandunpredictable,ne-grainedcontroloverthisstatisticmaynotbenecessaryorusefulinpractice.6.3EvaluatingDeniabilityvs.ThroughputInthissection,weevaluatethetradeoffbetweendeniabilityandthroughputoftheDenaLichannelusingourprototypeimplementa-tion.Werstdescribetheexperimentalsetupandthenpresenttheresults.6.3.1ExperimentalsetupWedesignanexperimentwithasender,areceiver,andasingleadversary.Eachdeviceisalaptop,wherethesenderandreceiverareconguredasdescribedinSection5.ThesendergeneratescovertrafcbybrowsingGmailoverasecureHTTPconnection.Theadversaryisathirdlaptopwithawirelessinterfacecardcongured