/
Kondo Physics, Heavy Fermion Materials and Kondo Insulators Kondo Physics, Heavy Fermion Materials and Kondo Insulators

Kondo Physics, Heavy Fermion Materials and Kondo Insulators - PowerPoint Presentation

calandra-battersby
calandra-battersby . @calandra-battersby
Follow
417 views
Uploaded On 2016-04-13

Kondo Physics, Heavy Fermion Materials and Kondo Insulators - PPT Presentation

Z Fisk UC Irvine Zhejiang University April 12 2015 Outline some superconductivity history felectron physics heavy Fermion superconductivity some phenomenology of the dense Kondo lattice Kondo insulators ID: 280437

phys kondo rev scale kondo phys scale rev heavy fermion state 2001 single lattice dense crystal materials superconductivity insulators

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Kondo Physics, Heavy Fermion Materials a..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Kondo Physics, Heavy Fermion Materials and Kondo Insulators

Z. Fisk UC Irvine

Zhejiang University April 12, 2015Slide2

Outline

some superconductivity history

f-electron physics

heavy Fermion superconductivity

some phenomenology of the dense Kondo lattice

Kondo insulatorsSlide3

where it all began

Onnes in his cryogenics laboratory in Leyden wins race to liquefy Helium (at 4.2K)Slide4
Slide5
Slide6
Slide7

1933 Zero resistance is not the signature effect of superconductivity:Slide8

1950s: the Edisonian approach to discovering new superconductors

and the era of conventional superconductivity

Fermi: systematics of materials may give a clueSlide9
Slide10
Slide11
Slide12
Slide13
Slide14
Slide15
Slide16
Slide17
Slide18
Slide19
Slide20
Slide21
Slide22
Slide23
Slide24
Slide25
Slide26
Slide27
Slide28
Slide29
Slide30
Slide31
Slide32
Slide33
Slide34
Slide35
Slide36
Slide37
Slide38
Slide39
Slide40
Slide41
Slide42
Slide43
Slide44
Slide45
Slide46
Slide47
Slide48

CeIn

3

CeMIn

5

Ce

2

MIn

8

Crystal Structures

M = Co, Rh, Ir (isovalent)Slide49
Slide50
Slide51
Slide52
Slide53
Slide54
Slide55
Slide56
Slide57
Slide58
Slide59

dilution studies of CeCoIn5

Cross over from single ion Kondo to C/T

 ln(T/T*) near 2D percolation thresholdSlide60
Slide61

Heavy Fermion Superconductor with

T

c

≈ 2.3 K

(C. Petrovic et al. J. Phys.: Condensed Matter

13

, L337 (2001).)

Quasi 2D electronic structure

(e.g. D. Hall et al., Phys. Rev. B

64

, 212508 (2001).)

Unconventional SC state

Line nodes, most likely

d

(

x

2

-

y

2

) symmetry

(e.g. R. Movshovich et al., Phys. Rev. Lett. 86, 5152 (2001). Izawa et al., Phys. Rev. Lett. 87, 057002 (2001))Normal state Non-Fermi-liquid behavior )rTCm/T – logT probably due to strong AF fluctuations(e.g. V.A. Sidorov et al., cond-mat/0202251,Shishido et al., J. Phys. Soc. Jpn. 71, 162 (2002).)Heavy Fermion Superconductor CeCoIn5

M = Co

Theoretical expectations near 2D AF QCP,

r

(

T / T

sf

)



C

m

/

T



– log

(

T / T

sf

)

T

sf

: a characteristic energy of spin-fluctuations

(e.g. T. Moriya and K. Ueda, Adv. Phys.

49

, 555 (2000).,

G. R. Stewart, Rev. Mod. Phys.

73

, 797 (2001). )Slide62
Slide63
Slide64

Systematic increase of

M/H

with La dilution

at low temperatures

Possible origins:

1) Crystal field splitting

2) Kondo coupling

T

K

3) Intersite coupling

Single impurity limit:

x

(La) > 0.95

Systematic change in low

T

susceptibility

Constant high temp.

T

KSlide65

6

148 K

197 K

7

(2)

7

(1)

1/2>

-1/2>

Crystal field analyses for Ce

1-

x

La

x

CoIn

5

T(K)

M/H (B//c)

M/H (B//a,b)Slide66
Slide67
Slide68

Basis of our analysis:

T

K

<<

T

*

(intersite) <<

(crystal field)

1 K 50 K 200 K

Energy scale diagram of Ce

1-

x

La

x

CoIn

5

4) Change in the ground state

properties at around

x

= 0.5.

1)

T

*ab, T*c, T*s are essentially identical.2) T* originates from the single- ion T

K

at

x

1 limit.

3) The systematic increase should

arise from intersite correlation

.

T

coh

T

*

at

x

0 limit.

Evolution of intersite AF fluctuations

similar to RVB with energy scale of

T

*

and correlation length of several

aSlide69

Entropy development in quantum critical regime

C/T

α

lnT

Typically: C/T = (Rln2/T*)ln(T*/T)

and S(T*) = Rln2

T* sets the scale for heavy Fermion physics

For heavy Fermion superconductors:

S(T

c

) ~ 10-20% Rln2 ↔ T

c

/T* ~ 1/20Slide70

Source of coherence scale in dense Kondo lattice

Kondo coupling parameter (

J) determines both T

K

and T*Slide71
Slide72

T

J

T

N

T

Kondo

QCP

T*

T

cSlide73

Kondo scale: TK

=

-1

e

-1/J

RKKY scale: T* = cJ

2

J = -1/ln(T

K

) = √(c

-1

T* )Slide74

Table I. Experimental

T*

,

T

K

and g

for a variety of Kondo lattice compounds.

Compound

T*

(K)

T

K

(K)

g

(mJ/mol K

2

)

J

r

c

Reference

CeRhIn

5

20

0.15

5.7

0.10

0.45

5,7,(H.L.)

CeCu

6

35

3.5

8

0.15

0.49

8,9

U

2

Zn

17

20

2.7

12.3

0.15

0.41

10,11,12

CeCu

2

Si

2

75

10

4

0.15

0.47

5,13,14

CePb

3

20

3

13

0.15

0.41

15,16

CeCoIn

5

50

6.6

7.6

0.16

0.55

3,5,6

CePd

2

Si

2

40

9

7.8

0.17

0.41

17,18

URu

2

Si

2

55

12

6.5

0.17

0.45

5,19,20

CePd

2

Al

3

40

10

9.7

0.18

0.45

21,22,23

CeRu

2

Si

2

60

20

6.68

0.19

0.42

24,25

UBe

13

55

20

8

0.19

0.43

26,27

YbRh

2

Si

2

70

20

7.8

0.19

0.53

(Z.F.)

YbNi

2

B

2

C

50

20

11

0.21

0.47

28

UPd

2

Al

3

60

25

9.7

0.21

0.48

23,29Slide75
Slide76

intrinsic Kondo impurities in pure CeCoIn5

low T properties consistent with

~ 10% free Kondo centers Slide77
Slide78
Slide79
Slide80
Slide81

conclusions

dense Kondo lattice scale set by Kondo single ion scale

Kondo liquid state disrupted by percolative non-Kondo component

similarity between doped dense Kondo and cuprate superconductors: Swiss cheese

residual Kondo gas in stoichiometric systemsSlide82

Kondo Insulators Aeppli

& Fisk: Comments Cond. Mat. Phys.

16

, 155 (1992)

FeSi

S. Föex ,J. Phys. Rad.

9

, 37 (1938); V. Jaccarino et al., Phys. Rev.

160

, 476 (1967)

SmB

6

A. Menth et al., Phys. Rev. Lett.

22

, 295 (1969)

CeNiSn

T. Takabatake et al., Jpn. J. Appl. Phys. Suppl.

26

, 547 (1987)

Ce

3

Bi4Pt3 M. F. Hundley et al., Phys. Rev. B 42, 6842 (1990)Slide83
Slide84
Slide85
Slide86
Slide87
Slide88
Slide89
Slide90
Slide91
Slide92
Slide93
Slide94
Slide95
Slide96
Slide97
Slide98
Slide99
Slide100
Slide101
Slide102
Slide103
Slide104
Slide105

arXiv:1211.6769Slide106
Slide107
Slide108
Slide109
Slide110
Slide111
Slide112
Slide113
Slide114
Slide115
Slide116
Slide117
Slide118
Slide119
Slide120
Slide121
Slide122
Slide123
Slide124
Slide125

Remarks

SmB

6

: robust surface conducting state

Surface conducting state only present when gap becomes well formed

SmB

6

unique so far

Aspects of Kondo insulator physics present in many materials

Failed Kondo insulators: CePd

3,

CeNiSn

Other materials: Ce compounds, Yb compounds, FeSi, half Heuslers, SmSSlide126
Slide127