PPT-Non-Linear Dimensionality Reduction

Author : calandra-battersby | Published Date : 2017-12-07

Presented by Johnathan Franck Mentor Alex Cloninger Outline Different Representations 5 Techniques Principal component analysis PCA Multidimensional scaling

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Non-Linear Dimensionality Reduction" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Non-Linear Dimensionality Reduction: Transcript


Presented by Johnathan Franck Mentor Alex Cloninger Outline Different Representations 5 Techniques Principal component analysis PCA Multidimensional scaling MDS Sammons nonlinear mapping. . local. image . descriptors. . into. . compact. . codes. Authors. :. Hervé. . Jegou. Florent. . Perroonnin. Matthijs. . Douze. Jorge. . Sánchez. Patrick . Pérez. Cordelia. Schmidt. Presented. Presented by: Johnathan Franck. Mentor: . Alex . Cloninger. Outline. Different Representations. 5 Techniques. Principal component . analysis (PCA)/. Multi-dimensional . scaling (MDS). Sammons non-linear mapping. Dimensionality Reduction. Author: . Christoph. . Eick. The material is mostly based on the . Shlens. PCA. Tutorial . http://www2.cs.uh.edu/~. ceick/ML/pca.pdf. . and . to a lesser extend based on material . Computer Graphics Course. June 2013. What is high dimensional data?. Images. Videos. Documents. Most data, actually!. What is high dimensional data?. Images – dimension 3·X·Y. Videos – dimension of image * number of frames. CunninghamandGhahramanilow-dimensionallinearmappingoftheoriginalhigh-dimensionaldatathatpreservessomefeatureofinterestinthedata.Accordingly,lineardimensionalityreductioncanbeusedforvisualizingorexplor (with a Small Dose of Optimization). Hristo. . Paskov. CS246. Outline. Basic definitions. Subspaces and Dimensionality. Matrix functions: inverses and eigenvalue decompositions. Convex optimization. Brendan and Yifang . April . 21 . 2015. Pre-knowledge. We define a set A, and we find the element that minimizes the error. We can think of as a sample of . Where is the point in C closest to X. . Principle Component Analysis. Why Dimensionality Reduction?. It becomes more difficult to extract meaningful conclusions from a data set as data dimensionality increases--------D. L. . Donoho. Curse of dimensionality. Kenneth D. Harris. April 29, 2015. Predictions in neurophysiology. Predict neuronal activity from sensory stimulus/behaviour. “encoding model”. Predict stimulus/behaviour from neuronal activity. “decoding model”. Devansh Arpit. Motivation. Abundance of data. Required storage space explodes!. Images. Documents. Videos. Motivation. Speedup Algorithms. Motivation. Dimensionality reduction for noise filtering. Vector Representation. Aayush Mudgal [12008]. Sheallika Singh [12665]. What is Dimensionality Reduction ?. Mapping . of data to lower dimension such . that:. . uninformative variance is . discarded,. . or a subspace where data lives is . John A. Lee, Michel Verleysen. 1. Dimensionality Reduction. By: . sadatnejad. دانشگاه صنعتي اميرکبير. (. پلي تکنيک تهران). Dim. Reduction- . Practical Motivations . 2. John A. Lee, Michel Verleysen, . Chapter4 . 1. Distance Preservation. دانشگاه صنعتي اميرکبير. (. پلي تکنيک تهران). 2. The motivation behind distance preservation is that any . Md. . . Sujan. . Ali. Associate Professor. Dept. of Computer Science and Engineering. Jatiya. . Kabi. . Kazi. . Nazrul. Islam University. Dimensionality Reduction and Classification. V. ariance.

Download Document

Here is the link to download the presentation.
"Non-Linear Dimensionality Reduction"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents