PDF-DEEP LEARNING GPU TRAINING SYSTEM

Author : celsa-spraggs | Published Date : 2016-11-21

DIGITS 1 Introduction to Deep Learning 2 What is DIGITS 3 How to use DIGITS AGENDA Practical DEEP LEARNING Examples Image Classification Object Detection Localization

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "DEEP LEARNING GPU TRAINING SYSTEM" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

DEEP LEARNING GPU TRAINING SYSTEM: Transcript


DIGITS 1 Introduction to Deep Learning 2 What is DIGITS 3 How to use DIGITS AGENDA Practical DEEP LEARNING Examples Image Classification Object Detection Localization Action Recognition Scene Un. Adam Coates. Stanford University. (Visiting Scholar: Indiana University, Bloomington). What do we want ML to do?. Given image, predict complex high-level patterns:. Object recognition. Detection. Segmentation. Early Work. Why Deep Learning. Stacked Auto Encoders. Deep Belief Networks. CS 678 – Deep Learning. 1. Deep Learning Overview. Train networks with many layers (vs. shallow nets with just a couple of layers). Aaron Crandall, 2015. What is Deep Learning?. Architectures with more mathematical . transformations from source to target. Sparse representations. Stacking based learning . approaches. Mor. e focus on handling unlabeled data. Deep Learning. Zhiting. Hu. 2014-4-1. Outline. Motivation: why go deep?. DL since 2006. Some DL Models. Discussion. 2. Outline. Motivation: why go deep?. DL since 2006. Some DL Models. Discussion. 3. Carey . Nachenberg. Deep Learning for Dummies (Like me) – Carey . Nachenberg. (Like me). The Goal of this Talk?. Deep Learning for Dummies (Like me) – Carey . Nachenberg. 2. To provide you with . Continuous. Scoring in Practical Applications. Tuesday 6/28/2016. By Greg Makowski. Greg@Ligadata.com. www.Linkedin.com/in/GregMakowski. Community @. . http. ://. Kamanja.org. . . Try out. Future . Deep Neural Networks . Huan Sun. Dept. of Computer Science, UCSB. March 12. th. , 2012. Major Area Examination. Committee. Prof. . Xifeng. . Yan. Prof. . Linda . Petzold. Prof. . Ambuj. Singh. Reading and Research in Deep Learning. James K Baker. 11-364 Deep Learning R&R. Hands-on Tutorial Books with Sample Code. Leading Edge Research Papers. Background Tasks. Learn the core concepts of Deep Learning. CS 501:CS Seminar. Min Xian. Assistant Professor. Department of Computer Science. University of Idaho. Image from NVIDIA. Researchers:. Geoff Hinton. Yann . LeCun. Andrew Ng. Yoshua. . Bengio. …. Aaron Crandall, 2015. What is Deep Learning?. Architectures with more mathematical . transformations from source to target. Sparse representations. Stacking based learning . approaches. Mor. e focus on handling unlabeled data. Topic 3. 4/15/2014. Huy V. Nguyen. 1. outline. Deep learning overview. Deep v. shallow architectures. Representation learning. Breakthroughs. Learning principle: greedy layer-wise training. Tera. . scale: data, model, . Ryota Tomioka (. ryoto@microsoft.com. ). MSR Summer School. 2 July 2018. Azure . iPython. Notebook. https://notebooks.azure.com/ryotat/libraries/DLTutorial. Agenda. This lecture covers. Introduction to machine learning. Outline. What is Deep Learning. Tensors: Data Structures for Deep Learning. Multilayer Perceptron. Activation Functions for Deep Learning. Model Training in Deep Learning. Regularization for Deep Learning. 1. Deep Learning. Early Work. Why Deep Learning. Stacked Auto Encoders. Deep Belief Networks. Deep Learning Overview. Train networks with many layers (vs. shallow nets with just a couple of layers). Multiple layers work to build an improved feature space.

Download Document

Here is the link to download the presentation.
"DEEP LEARNING GPU TRAINING SYSTEM"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents