Presentation on theme: "Investigation of a Blazed Reection Grating Daniel E"— Presentation transcript
2Twoprominentmethodsofmanufacturinggratingsareviaeitherrulingorholographictechniques.Inbothcases,averyaccurate\master"gratingismadeandthensubse-quentgratingsarereproducedfromthismastertemplate.Ruledgratingstakeontheformofasawtooth,whileholographicgratingsmorecloselyresemblesinewaves.Forasawtoothgrating,theanglebetweenthelongsideoftheruledsurfaceandtheplaneofthegratingisknownastheblazeangle.Itisthisanglethatdeterminesintowhichorderthediractedlightwillbedirected.Holo-graphicgratings,ontheotherhand,cannotbeblazedaseasilyandthereforeproducemuchlowerecienciesthanruledgratings.Whenthewavelengthoftheincidentlight,however,isontheorderofthegratingspacing,theeciencyincreasestothepointthatitiscomparabletothatofaruledgrating.Thiswavelengthofmaximumeciencyiscalledtheblazewavelength.FortheOrielgratingusedinthisexperiment,theblazewavelengthis250nm.[6]Forasinusoidallyshapedholographicgrating,theblazeangleisdenedastheangleatwhichboththeincidentlighthitsthegratingandthediractedlightisre
ected,relativetothegratingnormal,whentheinci-dentlightwavelengthisequaltotheblazewavelength.[7]Inotherwords,theblazeangleistheanglethatsat-isesequation(1)forbothinandmfor=b,andmisorderofwhichevermaximatowhichthelightisdirected.Forthegratingusedinthisexperiment,themanufacturerhasprovidedthatthegratingdirectsthemajorityofthelightintensityintotherstorderandthatb=250nm.Wemaythencalculatetheblazean-glenecessarytodiractthelightintensityintotherstorder(m=1),beginningwiththegratingequation:sin(m)+sin(in)=m
dsin()+sin()=1b
d=arcsinb
2d:(2)EXPERIMENTThisequipmentusedinthisexperimentincludedaDi-mension3100AFM,anOriel77230re
ectiongrating,andanopticalspectrometer.TheOrielre
ectiongratingwasrststudiedbyatomicforcemicroscopy.TheAFMwastestedusingawafercontainingagridof55mwells.There
ectiongratingwasthenscanned.Severalscansweretakenwithsizesofboth55mand11m.Thegratinghadbeenpreviouslyused,andwasthereforesomewhatscratched.Carewastakennottoscananareathatwasexessivelyscratched.TheAFMwascontrolledusingthenanoscopesoftware.Thegratingswerescannedsuchthatthetipmovementwasneverparalleltothegratingruling.DatacollectedfromthesescanswasthenimportedintothecomputerprogramIgorProCarbonv.4.05foranalysis.Theopticaldiractivepropertiesofthegratingwerethenstudied.Aspectrometerwasusedinordertode-terminetheangleofincidenceandofdiractionforthegratingtothenearestminuteofarc.ThelightsourcewaschosentobeaMercurylamp,becauseitemitsmul-tiplediscretewavelengthsoflight.Thisway,multiplediractionmaximawereobserved.Theanglesoftheze-rothandrstorderdiractionmaximawererecordedformultiplewavelengthsoflight.Fivemeasurementsweremadeforeachmaximainordertoensurereproducibility.Eachtime,thespectrometerapproachedthepeakfromtherightsoastominimizethepossibilityofsystematicerror.RESULTSANDANALYSISLineSpacingBecausethegratingwasproducedbyholography,itssurfaceshouldbeshapedasasinewave.Thus,anaver-ageestimateofthefrequencyofoscillationmaybedeter-minedbyttingasinewavetothecross-sectionalAFMdataasshowninFigure1.Thecrosssectionwaschosensothatwelookalmostdirectlydownthelengthofthegratinglines.Inotherwords,we\cut"perpendiculartothegratinglines.Thus,localinconsistenciesareaver-agedoutofthedata,andtheaveragedistancemaybedeterminedusingthefrequencyofoscillation.ThisdataissummarizedinTableI.
FIG.1:Asinewavettedtothecrosssectionofascan.Usingequation(1),theanglesmeasuredusingthespectrometermaybeused,alongwiththewavelengthsoflightemittedbytheHglamp,todeterminethedis-tancebetweengratinglinesdandthusthelinesspacingS.TheseresultsaresummarizedinTableII.BlazeAngleThegratingstudiedherewasfabricatedsuchthatthereare2400lines/mm.Thisspecicationcorrespondstoa
3TABLEI:Spacingdataforthethreere
ectiongratingscansamples,asdeterminedbysinewavets.
Scan#
Spacing(Lines/mm)
1
24244
2
23152
3
23152
Average
235151()
TABLEII:Summaryoflinespacingasdeterminedbyopticaldiraction.
Trial
Sspacing(Lines/mm)
1
24006
2
24006
3
24006
4
24036
5
24016
Average
24016
linespacingd=416:7nm.Byplottingasafunctionofb,usingequation(2)form=1,weobtainawaytodeterminetheblazeanglefromthemanufacturer'sblazewavelength(Figure2).
FIG.2:Agraphofblazeangle,,versusblazewavelength,b.Byusingthemanufacturer'svaluefordandb,wemaysolveequation(2)fortheblazeangle.Forthegratingusedinthisexperiment,=17:5.Aspreviouslymentioned,foraruledre
ectiongrating,theblazeanglewhichaectstowhichorderlightisdirectedisdenedastheanglebetweenthelongfaceofthesawtooth-shapedsurfaceandtheplaneofthegrating.Withaholographicgrating,thesurfaceisshapedasasinewave.Byusingthedenitionoftheblazeangleforaruledgrating,wemayapproximatetheblazeangleforaholographicgratingbyassumingthatthesinewaveisapproximatelyatriangularwave.AsillustratedinFigure3,ifwemakethisassumption,calculationoftheblazeanglebecomespossible.
FIG.3:Approximateblazeangleforaholographicgrating.Ifweassumethattheheightofthe\triangle"issimplytheheightofthesinewave,thentheverticalsideofthetriangleissimplytwicetheamplitude.Also,wemayassumethatthewidthofthetriangleisonehalfoftheperiodofthewave.Usinggeometry,wemaycalculatetheapproximateblazeangle:tan=2A
d=2=arctan4A
d(3)UsingEquation(3)theaprroximateblazeanglewascal-culatedforthebest-tsinewavesgeneratedpreviouslytondthespacingd.TheseresultsaresummarizeinTableIIITABLEIII:Spacingdataforthere
ectiongrating,asdeter-minedbyasinewavet.
ScanFilename
(degrees)
`refgrat2.004'
12:40:1
`refgrat2.007'
12:80:2
`refgrat2.009'
11:90:2
Average
12:40:4()
Thecalculatedvalueof17:5isconsistentlylargerthanthoseapproximatedusingatomicforcemicroscopy.Thisdierencecouldbecausedbythreesources.First,itispossiblethatsomesortofsystematicerrorwasinvolvedintheAFMmeasurement.TheAFMwasperhapsnotcalibratedproperly.Inaddition,asecondsourceoferrorcouldbethesteepnessofthegratinglines.Whenthetiptravelsalongthegratingsurface,itcannotaccuratelymeasuresteepslopes.Thistypeoferrorwouldresultin