1 No 1 2004 157173 World Scienti64257c Publishing Company ZEROMOMENT POINT THIRTY FIVE YEARS OF ITS LIFE MIOMIR VUKOBRATOVI Institute Mihajlo PupinVolgina 15 11000Belgrade Serbia and Montenegro vukrobotimpbgacyu BRANISLAV BOROVAC University of Novi ID: 17674 Download Pdf
Rapid exploration of robotic ankle exoskeleton control strategies. PI: . Steve Collins. Carnegie Mellon University. Experimental Biomechatronics Laboratory. Project Overview. Missing keys for exoskeleton design:.
S ROBOTS INCREASINGLYBE-comepart of our everyday lives,they willserve as caretakers for the elderly and dis-abled,assistants in surgery and rehabilita-tion,and educational toys. But for this to hap-pe
68 ESTOATION ROBOTICS,nc., the company that developed the TASRobotic ystem, is at the forefront in hair restoration. Follicular \r
edu httpwwwcscmuedu bstephe1 Abstract This paper presents a balance controller that allows a humanoid to recover from large disturbances and still maintain an upright posture Balance is achieved by integral control which decouples the dynamics and p
Lynch Naoji Shiroma Hirohiko Arai Kazuo Tanie Mechanical Engineering Department Inst of Eng Mechanics and Systems Robotics Department Northwestern University University of Tsukuba Mechanical Engineering Laboratory Evanston IL 60208 USA 111 Tennodai
upces Abstract In this paper we present new algehrwic analysis of the closure equation obtained for arbitrary single loop spatial kinematic chains which allows us to design an eficient interval method for solving their inverse kine matics The soluti
Philipp . Allgeuer. , Hafez . Farazi. , Michael Schreiber and Sven . Behnke. Autonomous Intelligent Systems. University of Bonn. Existing Standard Platforms. Existing Standard Platforms. Motivation. Why a new platform?.
2 No2 April 2011 DOI105121iju20112203 26 Sarita Pais and Judith Symonds Whitireia Community Polytechnic Auckland Saritapaiswhitireiaacnz Auckland University of Technology Auckland Judithsymondsautacnz Abstract RFID tags can store more than
cojp gordonatrcojp httpwwwcnsatrcojphrcn Christopher G Atkeson and Garth Zeglin The Robotics Institute Carnegie Mellon University cgacscmuedu garthzricmuedu httpwwwricmuedu Abstract We propose a modelbased reinforcement learning algorithm for biped
KIJU LEE, Ph.D. Department of Mechanical and Aerospace EngineeringCase Western Reserve University10900 Euclid Avenue, Cleveland, Ohio 44106, USAkiju.lee@case.edu EDUCATION Ph.D. 2008Mechanical Enginee
Published bycheryl-pisano
1 No 1 2004 157173 World Scienti64257c Publishing Company ZEROMOMENT POINT THIRTY FIVE YEARS OF ITS LIFE MIOMIR VUKOBRATOVI Institute Mihajlo PupinVolgina 15 11000Belgrade Serbia and Montenegro vukrobotimpbgacyu BRANISLAV BOROVAC University of Novi
Download Pdf - The PPT/PDF document "April WSPCIJHR International Journal..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
April10,200422:17WSPC/191-IJHR00008 M.Vukobratovi´c&B.Borovacedgescausedbystrongdisturbances,whichisequivalenttotheappearanceofanunpowered(passive)DOF,(ii)gaitrepeatability(symmetry),whichisrelatedtoregulargaitonly,and(iii)regularinterchangeabilityofsingle-anddouble-supportphases.Duringwalking,twodierentsituationsariseinsequence:thestaticallystabledouble-supportphaseinwhichthemechanismissupportedonbothfeetsimultaneously,andstaticallyunstablesingle-supportphase,whenonlyonefootofthemechanismisincontactwiththegroundwhiletheotherisbeingtransferredfromthebacktofrontpositions.Thus,thelocomotionmechanismchangesitsstruc-tureduringasinglewalkingcyclefromanopentoaclosedkinematicchain.Allthesecircumstanceshavetobetakenintoaccountinarti“cialgaitsynthesis.Allofthebipedmechanismjointsarepoweredanddirectlycontrollableexceptforthecontactbetweenthefootandtheground(whichcanbeconsideredasanadditionalpassiveDOF),wheretheinteractionofthemechanismandenvironmentonlytakesplace.Thiscontactisessentialforthewalkrealizationbecausethemech-anismspositionwithrespecttotheenvironmentdependsontherelativepositionofthefoot/feetwithrespecttotheground.Thefootcannotbecontrolleddirectlybutinanindirectway,byensuringtheappropriatedynamicsofthemechanismabovethefoot.Thus,theoverallindica-torofthemechanismbehavioristhepointwherethein”uenceofallforcesactingonthemechanismcanbereplacedbyonesingleforce.ThispointwastermedtheZero-MomentPointZMPRecognitionofthesigni“canceandroleofZMPinthebipedarti“cialwalkwasaturningpointingaitplanningandcontrol.Theseminalmethodforgaitsynthesis(semi-inversemethod)wasproposedbyVuko-bratovi´candJurici´Itshouldbenotedthatdespiteofthelimitationthatthemotioncanbesynthesizedonlyforasmanyjointsasthezero-momentconditionscanbepreset,thismethodhasremainedforalongtimetheonlyprocedureforbipedgaitsynthesis.TheZMPisalsoindispensableinbipedcontrol,forestablish-ingthepracticallyunavoidablefeedbackwithrespecttodynamicgroundreactionforces.Inthispaperwereviewsomebasicissuesrelatedtobipedlocomotionwithpar-ticularattentionpaidtotheZMPbecauseofitscrucialimportanceforgaitanalysis,synthesisandcontrol.DespitethefactthatthenotionofZMPhasneverbeenintro-ducedintheformofaformalde“nition,inthecourseofalmostthreeandahalfItshouldbenotedthatin“rsttwopapersneitherthetermZMP(themechanismhadapin-pointfootandnosupportareawasemployed)norsemi-inversemethodwereexplicitelymentioned.However,thecompensationaldynamicswasobtainedonthebasisofthesemi-inversemethodandtheZMPconcept,althoughthepossiblepositionsofZMPinthiscasewerereducedtothetipofthepin-pointfoot.Acoupleofyearslater,whenaspatiallinkwasusedinsteadofthepin-pointfoot,thenotionofZMPwasformallyintroduced.Actually,wecansetupzero-momentconditionsforanypassive(unpowered)DOFofthemecha-nism.Forexample,apartfromthefoot-groundcontactwecansetupzero-momentconditionsfortheshoulderjointforfreelyswingingarms(passiveDOFs),whilethemotionatallotherjointshastobeprescribed. April10,200422:17WSPC/191-IJHR00008 Zero-MomentPoint—ThirtyFiveYearsofItsLifedecadesthisconcepthasbeeninvolvedinverydiverseapplicationsrelatedtonume-rousanthropomorphiclocomotionmechanismsofdierentdegreesofcomplexity.TheaimofthisworkisprimarilytoremindthereaderoftheseminalresultsrelatedtoZMP,whose“rstpracticalapplicationwasintherealizationofthedynam-icallybalancedbipedgaitin1984(performedbytheWL-10RDrobot,developedinIchiroKatoslaboratoryatWasedaUniversity),andwhichwasreported16yearsaftertheappearanceoftheZMPconcept.Besidesthis,afterinspectingnumer-ouspapers,publishedespeciallyintheproceedingsofinternationalconferencesdevotedtohumanoidrobots,wehavefoundsomeinsucientlyprecise,andsome-timesincomplete,de“nitionsofZMPthatmightpotentiallyleadtoaninappropri-ateunderstandingofthisconcept,especiallybyyoungerresearchers,thoughthisconcepthasgainedunequivocalcon“rmationthroughagreatnumberofsophisti-catedrealizationsofhumanoidrobots.Hence,thispaperaimsatrefreshingtheZMPnotion,re-stressingitsbasicmeaning,andmentioningsomenew,butveryessential,phenomenathathavestillremainedfromthefocusofthestudiesongaitdynamicsandcontrol.Finally,wetouchuponsomeotherformsoflocomotion-manipulationactivitiesconsideredasextremelycomplexcontacttasks.2.TheZMPNotionApartfromtherealizationoftherelativemotionofthemechanismslinks,themostimportanttaskofalocomotionmechanismduringthegaitistopreserveitsdynamicbalance(somenewŽauthorsusethetermstabilityŽ!),whichisachievedbyensuringthefootswholearea,andnotonlytheedge,isincontactwiththeground.Thefootreliesfreelyonthesupportandtheonlycontactwiththeenvi-ronmentisrealizedviathefrictionforceandverticalforceofthegroundreaction.Letusconsiderthelocomotionmechanisminthesingle-supportphase[Fig.1(a)],withthewholefootbeingontheground.Tofacilitatetheanalysiswecanneglectthepartofthemechanismabovetheankleofthesupportfoot(pointA)andreplaceitsin”uencebytheforceandmoment[Fig.1(b)],wherebytheweightofthefootitselfactsatitsgravitycenter(pointG).ThefootalsoexperiencesthegroundreactionatpointP,whoseactionkeepsthewholemechanisminequilibrium.Ingeneral,thetotalgroundreactionconsistsofthreecomponentsoftheforce)andmomentand).Sincethefrictionforceactsatthepointofcontactofthefootwiththeground,andthefootonthegroundisatrest,thosecomponentsoftheforceandmomentthatactinthehori-zontalplanewillbebalancedbyfriction.Therefore,thehorizontalreactionforce)representsthefrictionforcethatisbalancingthehorizontalcomponentoftheforce,whereastheverticalreactionmomentrepresentsthemomentoffrictionreactionforces[Fig.1(c)]thatbalancestheverticalcomponentofthemomentandthemomentinducedbytheforce.Thus,ifweassumethefoot-”oorcontactiswithoutsliding,thestaticfrictionwillcompensateforthehor-izontalforcecomponents()andverticalreactiontorque().Thevertical April10,200422:17WSPC/191-IJHR00008 M.Vukobratovi´c&B.Borovac R A MAZMZ XYZ0 AA G M RPmgsMFAMAM z yZ Y PR Fig.1.Bipedmechanismandforcesactingonitssole.reactionforcerepresentsthegroundreactionthatbalancesverticalforces.Itremainstoconsiderthebalancingofthehorizontalcomponentofthefootloadmoment.However,duetoaunidirectionalnatureoftheconnectionbetweenthefootandtheground(itisobviousthatthegroundreactionforceinducedbyfootactionisalwaysorientedupwards)horizontalcomponentsofallactivemomentscanbecompensatedforonlybychangingpositionofthereactionforcewithinthesupportpolygon.Therefore,thehorizontalcomponentofthemomentwillshiftthereactionforcetothecorrespondingposition,tobalancetheadditionalload.ThisisillustratedinFig.1(d),where,forthesakeofsimplicity,wepresentasimpleplanarcaseintheplane.Themomentisbalancedbyshiftingtheactingpointoftheforce,whoseintensityisdeterminedfromtheequationofbalanceofalltheforcesactingonthefoot,bythecorrespondingdistance.Itisnecessarytoemphasizethatallthetimethereactionforceiswithintheareacoveredbythefoot,theincreaseintheanklemomentwillbecompensatedforbychangingthepositionofthisforce,andnohorizontalcomponentsofthemomentsandwillexist.ThisisthereasonwhyinFig.1(b)atpointPonlythecomponentHowever,iftherealsupportpolygonisnotlargeenoughtoencompasstheappropriatepositionoftheforcetobalancetheactionofexternalmoments,theforcewillactatthefootedgeandtheuncompensatedpartofthehorizontal April10,200422:17WSPC/191-IJHR00008 Zero-MomentPoint—ThirtyFiveYearsofItsLifecomponentofthereactionmomentwillcausethemechanismsrotationaboutthefootedge,whichcanresultinthemechanismsoverturning.Therefore,wecansaythatthenecessaryandsucientconditionforthelocomotionmechanismtobeindynamicequilibriumisthatforthepointPonthesolewherethegroundreactionforceisacting,(1)Sincebothcomponentsrelevanttotherealizationofdynamicbalanceareequaltozero,anaturalchoicetonamethispointwasZero-MomentPoint.Or,inotherwords,allthetimethereactionofthegroundduetothefootrestingonitcanbereducedtotheforceandverticalcomponentofthemoment;thepointPatwhichthereactionforceisactingrepresentsZMP.Now,alogicalquestioncanbeposed:giventhemechanismdynamics,whatshouldtheZMPpositionbethatwouldensuredynamicequilibrium?Itshouldbenotedthatinviewofthefactthattheentiremechanismissupportedonthefoot,aprerequisiteforthemechanismsdynamicequilibriumisthatthefootrestsfullyonthe”oor.Thus,toanswerthepreviousquestionletusstatethestaticequilibriumequationsforthesupportingfoot[Fig.1(b)]:(2)(3)whereandareradiusvectorsfromtheoriginofthecoordinatesystemxyztothegroundreactionforceactingpoint(P),footmasscenter(G),andanklejoint(A),respectively,whilethefootmassis.IfweplacetheoriginofthecoordinatesystematthepointPandprojectEq.(3)ontothe-axis,thentheverticalcomponentofthegroundreactionmoment(actually,itisthegroundfrictionmoment)willbeInageneralcase,thismomentisdierentfromzeroandcanbereducedtozeroonlybytheappropriatedynamicsoftheoverallmechanism.However,theprojectionofAlthoughnorotationalslippageofthefootoverthegroundsurfacewilloccurinanormalwalk,tocoverthis(veryhypothetical)possibilityitcanberequestedthatduringthemechanismmotioneventhethirdmomentcomponentisequaltozero(=0).Toachievethis,themechanismshouldperformsomeadditionalmovements,forexample,bythetrunkabouttheverticalaxistoensurethat=0,wherethesuperscriptVstandsfortheverticalcomponentofthemomentattheanklejont.However,foraregularmotionandanormalfrictioncoecientbetweenfootandgroundtherequirement=0isnotnecessarybecausethismomentisintrinsicallycompensatedbythefrictionforce. April10,200422:17WSPC/191-IJHR00008 M.Vukobratovi´c&B.BorovacEq.(3)ontothehorizontalplanegives(4)Thisequationisabasisforcomputingthepositionofthegroundreactionforceactingpoint(P).Equation(4),representingtheequationofthefootequilibrium,answerstheabovequestionconcerningtheZMPpositionthatwillensuredynamicequilibriumfortheoverallmechanismdynamics,butitdoesnotanswertheinversequestion:whetherforthegivenmotionthemechanismisindynamicequilibrium?Toanswerthisquestionwehavetoconsidertherelationshipbetweenthecom-putedpositionofPandthesupportpolygon.IfthepositionofpointP,computedfromEq.(4),iswithinthesupportpolygon,thesystemisindynamicequilibrium.However,inreality,thepointPcannotexistoutsidethesupportpolygon,asinthatcasethereactionforcecannotactonthesystematall.Fromthisfollowsastraightforwardbutveryimportantconclusion:inreality,inordertoensuredynamicequilibrium,apointPthatsatis“esEq.(4)mustbewithinthesupportpolygon.IfwesupposeforamomentthatthepointPisoutsidethesupportpolygon,letusconsiderwhatwouldthenbethemeaningofthispoint.InviewofthefactthatthispositionofPwasobtainedfromthecondition=0,wecanconsideritasa“ctitiousZMP(FZMP).Therefore,inreality,ZMPcanexistonlywithinthesupportpolygon,andthispointwecantermregularZMP,orZMPforshort,andallthecalculatedpositionsofthepointPoutsidethesupportpolygonrepresent“ctitiouslocations.Letusexplainthisinmoredetail.ItisclearfromEqs.(2)and(3)thattheZMPpositiondependsonthemechanismdynamics(i.e.onand).InthesituationwhenthemechanismdynamicschangessothattheZMPapproachesthesupportpolygonedge(ineithersingle-supportordouble-supportphases)letusfocusourattentiononthemomentwhentheZMPisjustreachingthesupportpolygonedge.ThecorrespondingpointwillremaintheZMPonlyifnoadditionalmomentsareactingatthispoint.However,ifanadditionalmomentappeared,thelocomotionmechanismwouldstarttorotateaboutthefootedgeandthemechanismwouldcollapse.Insuchasituation,theactingpointofgroundreactionforcewouldbeonThetermFoot-RotationIndicator(FRI)Pointhasbeensuggested.Obviously,inaregulargait,itiswhollyundesirabletohavetheZMPonthesupportpolygonedge(orclosetoit),asanadditionalmomentthatwouldcausethemechanismtooverturneasily.InthatcaseanurgentactionofthebipedcontrolsystemwouldberequiredtobringtheZMPbacktothesafetyzone.ŽThiscanbeachievedbyappropriateinterventionmovements.Inreality,thefootisnotideallyrigidbutdeformable,andinthecaseofitsinitialrotationinclina-tion,theedgewilltransformintoanewsurface,e.g.intoanarrowstrip.Withincreasinginclinationangle,thesizeandpositionofthecontactsurfacewillchange,andconsequently,anewcontactarea(strip)willbeestablished.IftheZMPiswithinthenewcontactarea(strip),themechanismsdynamicequilibriummightbepreservedevenifthecontactareaisoutsidetheprevioussupportpolygon.Inotherwords,thecondition=0willbeful“lleduntiltheZMPiswithintheinstantenouscontactarea,irrespectiveofwhetheritiswithinoroutsidetheprevioussupportpolygonthatexistedbeforetheinclination.Inthisway,i.e.byfootinclination,itispossibletocompensateforawiderspanofdisturbance.Hence,theelucidation,modelingandrealizationof April10,200422:17WSPC/191-IJHR00008 Zero-MomentPoint—ThirtyFiveYearsofItsLife x Fig.2.Examplesofthedispositionofforcesensorsonthemechanismssole.thefootedge(thereactionforcemustopposetheactionforceatthesamepoint!),butthispointwouldnotbeZMPanymore,sincebothconditions=0and=0wouldnotbeful“lledsimultaneously.TofurtherclarifythemeaningoftheZMPoutsidethesupportpolygon(FZMP)letusberemindedthattherearetwodierentcasesinwhichtheZMPplaysakeyrole:(i)indeterminingtheproperdynamicsofthemechanismabovethefoottoensureadesiredZMPposition,(ii)indeterminingtheZMPpositionforthegivenmechanismmotion.Case(i)belongstothetaskofgaitsynthesisandwillnotbefurtherelabo-ratedhere,whereasCase(ii)referstothegaitcontrol,wheretheZMPpositionisakeyindicatorofthemechanismdynamicequilibrium.Thus,acrucialquestionishowtodeterminetheZMPposition.Inthecaseofarealwalkingmechanism,informationaboutZMPpositioncanbeobtainedbymeasuringforcesactingatthecontactofthegroundandthemechanism,withtheaidofforcesensorsonthemechanismssole.Itshouldbenoticedthatmeasurementcouldbeperformedonlyifallforcesensors(seeFig.2)areincontactwiththeground.Ifsomeofthesensorsdeployedfromthegroundsurface,themechanismasawholewouldrotateaboutthefootedgeandoverturn.Toovercomesuchasituationitisnecessarytochangethecontrolstrategy.However,ifthebipedgaitisinvestigatedusingadynamicmodel,theZMPpositionmustbecomputed.Foragivenmechanismmotion,theforceandmomentattheanklejoint(and)canbeobtainedfromthemodelofthemechanismdynamics,andallelementsinEq.(4)exceptforwillbeknown.TheprocedurefordeterminingZMPpositionconsistsoftwosteps.Step1.ComputefromEq.(4)(seeFig.1).LetuscalltheobtainedpositionofthepointPcomputedZMPposition.Noteagainthatatthismomentweactuallythefootasa”exiblestructure,havingasoftcontactsurface,isanimportantandcomplextaskthatremainstobeproperlyresolved.Theonlysituationwhenadynamicallybalancedgaitisperformedwhilethegroundreactionforceisintentionallykeptwithinaverynarrowarea(thetiptoe)occursinaballeticmotion,butthisdoesnotbelongtoaregularbipedgait. April10,200422:17WSPC/191-IJHR00008 M.Vukobratovi´c&B.Borovac YZ0 A MFAA PR XZ0 PY A MAFA r FZMP Fig.3.IllustrationofthedeterminationofZMPposition:(a)Step1,and(b)Step2.donotknowwhetherthispositionofpointP[seeFig.3(a)]willbewithintherealsupportpolygonoroutsideit.Step2.ThecomputedZMPpositionisjustacandidatetobearegularZMPanditspositionshouldbecomparedwiththerealsupportpolygonsize.Ifthecom-putedZMPisoutsidethesupportpolygon,thismeansthatthegroundreactionforceactingpoint(P)isactuallyontheedgeofthesupportpolygonandthemech-anismrotationaboutthesupportpolygonedgewillbeinitiatedbytheunbalancedmoment,whoseintensitydependsonthedistancefromthesupportpolygonedgetothecomputedpositionofZMP,i.e.totheFZMPposition.TheaboveprocedureisillustratedinFig.3.InStep1,weobtainananswertothequestionconcerningtheZMPlocationforthegivendynamicsnottakingintoaccounttherealfootsize[seeFig.3(a)],whereasinStep2,weobtaintheanswerwhether,regardingthefootsize(moreprecisely,thesupportpolygonsize),themechanismisreallybalancedornot,andwheretheregularZMP(provideditexists)islocated.Ifthecomputedactingpointofthegroundreactionforceiswithintherealsupportpolygon,thispointisZMPandthemechanismisinequilibrium.Ifthisisnotthecase,thegroundreactionforceactingpointwillbeonthesupportpolygonborder(thegroundreactionforcecannotexitthesupportpolygon!)andthedistancefromittothecomputedZMPpositionisproportionaltotheintensityoftheperturbationmomentthatactsonthefoot[Fig.3(b)].TheZMPconcepthasbeenproperlycomprehendedbyresearchers,widelyused,andveryfrequentlycited.Itcanbenotedthat,althoughbeingessentiallycorrect,alltheZMPde“nitionsdiersigni“cantlyintheextentoftheirdetail.Toillustratethiswegivejusttwointerpretations.The“rstinterpretationisbasicallythesameintwopapers:ZMPinterpretation1.ZMPisdeÞnedasthatpointonthegroundatwhichthenetmomentoftheinertialforcesandthegravityforceshasnocomponentalongthehorizontalaxes April10,200422:17WSPC/191-IJHR00008 Zero-MomentPoint—ThirtyFiveYearsofItsLifeTheotherinterpretationZMPinterpretation2.pisthepointthatandrepresentthemomentsaroundx-andy-axisgeneratedbyreactionforceandreactiontorque,respectively.ThepointpisdeÞnedastheZeroMomentPoint(ZMP).WhenZMPexistswithinthedomainofthesupportsurface,thecontactbetweenthegroundandthesupportlegisstable:ZMPZMPZMPwhereZMPdenotesapositionofZMP.Sdenotesadomainofthesupportsurface.ThisconditionindicatesthatnorotationaroundtheedgesofthefootoccursPrimarilybecauseofthoseyoungerresearchersthatarejustbeginningtheirworkinthis“eldandwhooftenhavehadnoinsightintotheoriginalworksinwhichtheZMPnotionwasintroduced,letusnoticethatZMPhasoftenbeeninsucientlypreciselyrelatedtothegroundsurface(asurfaceofpracticallyunlimitedsize),evenwithoutmentioningthesupportpolygon.Also,ithasoftenbeenmissedtostressthataZMPoutsidethesupportpolygonpracticallyhasnosense,asinZMPdefactodoesnotexist,andinrealitythemechanisminsuchsituationsfallsbyrotatingabouttheedgeofthesupportpolygon.Herewehavetopointoutanotherimportantissue,andthisisthedierencebetweenthecenterofpressure(CoP)andZMP,asitisveryimportanttomakeacleardistinctionbetweenthetwonotions,whichmustnotgenerallyberegardedasidentical.Thepressurebetweenthefootandthegroundcanalwaysbereplacedbyaforceactingatthecenterofpressure„CoP.Ifthisforcebalancesallactiveforcesactingonthemechanismduringthemotion(inertia,gravitation,Coriolisandcentrifugalforcesandmoments)itsactingpointisZMP.Thus,inthecaseofadynamicallybalancedgait,CoPandZMPcoincide.Whenthegaitisnotdynamicallybalanced,ZMPdoesnotexistandthemechanismcolapsesaboutthefootedge.TomaketheZMPnotionanditsrelationshipwithCoPperfectlyclearwewillsummarizeourpreviousdiscussioninthreecharacteristiccasesforanon-rigidfootincontactwiththeground,assketchedoutinFig.4.Inabalancedgait,theZMPcoincideswithCoP[Fig.4(a)].Inthecaseofadisturbancethatbringstheactingpointofthegroundreactionforcetothefootedge,theperturbationmomentwillcauserotationofthebipedsystemaboutthefootedge(aswealreadymentioned,thefootedgeisinfactaverynarrowstripastheshoesoleisnottotallyrigid)anditsoverturning.Inthatcasewecanspeakonlyofthe“ctitiousZMP,whosedistancefromthefootedgerepresentstheintensityoftheperturbationmoment[Fig.4(b)].However,itispossibletorealizethebipedmotion,forexample,onthetoetips[Fig.4(c)]withspecialshoeshavingapinpointarea(balleticmotion),whilekeepingtheZMPpositionwithinthepinpointarea. April10,200422:17WSPC/191-IJHR00008 M.Vukobratovi´c&B.Borovac –R–R–R–M ZMP CoP ZMPFZMPCoP Fig.4.PossiblerelationsbetweenZMPandCoPforanon-rigidfoot:(a)dynamicallybalancedgait,(b)unbalancedgaitwhereZMPdoesnotexistandthegroundreactionforceactingpointisCoPwhilethepointwhere=0and=0isoutsidethesupportpolygon(FZMP).Thesystemasawholerotatesaboutthefootedgeandoverturns,and(c)tiptoedynamicbalance(balleticmotionŽ).AlthoughtheZMPnowcoincideswithCoP,itisnotaregulargait,andthepersonshouldbespeciallytrainedtoperformit.Here,itisnecessarytoberemindedthatthetaskofderivingamodelofnominaldynamicsofahumanoidrobotisconcernedwithsatisfyingacertainnumberofdynamicconnections.Thisisinfacttheso-calledmixedtypeoftask,whenthelinksmotionandthedrivingtorquesarebothpartlyknownandtheircomplementsaresought.Inthecaseofinvestigatingthedynamicsofbipedstructure,themotionofthelinksperformingagiventypeofgaitisknown,whiletheknownmomentsareequaltozero.Thelatterfollowsfromtheequilibriumconditionsholdingforaselectedpointwithinthesupportpolygonandforthejointsofpassivelinks.Therefore,therearetwotypesofzero-momentpoints.Bothofthemservetoformthemodelofnominaldynamicsofthehumanoidrobot,butthosewithinthesupportpolygonarepracticallyunavoidableingaitsynthesisaswellasfortheoverallcontrolofdynamicallybalancedgait.TorelatetheZMPnotiononlytoCoPisnotcorrectastheZMPcanexistatsomeotherpointsinthesystem,e.g.attheshoulderjontsifweconsiderarmsasfreely-swingingpendulumswithnoactuatorsatthejoints.Insummary,theZMPalwayscoincideswiththeCoP(dynamicallybalancedgait),buttheCoPisnotalwaysZMP(dynamicallyunbalancedgait).However,theFZMPnevercoincideswiththeCoPbecauseCoPcannot,naturally,existoutsidethesupportpolygon.3.SomeFurtherNotesZMPandFZMPItisofcrucialimportancetoexplainthesigni“canceandroleoftherealZMPandits“ctitiouspositionoutsidethesupportpolygon„FZMP.Inhumanoidgaitrealization,thetaskofprimaryimportanceisundoubtedlytoconstantlymaintaindynamicequilibrium,i.e.toperformdynamicstabilization.HencethebasictaskofthecontrolsystemistokeeptheZMPwithinthesupport April10,200422:17WSPC/191-IJHR00008 Zero-MomentPoint—ThirtyFiveYearsofItsLifepolygon,topreventitfromcomingtooclosetothesupportpolygonedge,andthusavoidthelossofequilibriumoftheoverallsysteminthecaseofasuddendisturbance.However,thequestionremainswhattodoifsuchasituationstillaroseandwhetherpotentialinformationabouttheFZMPcouldbeofanyhelp.Inthegaitperformedbyawalkingmechanism,atthemomentoftheoccurrenceofanexternaldisturbance,thecontactofthehumanoidmechanismwiththegroundwillbereducedtoanarrowstriponthefootedge,andthatverymomentwillceasethepossibilityofregularmaintainingofthemechanismsdynamicbalance.Namely,bylosingregularcontactofitsfootwiththeground,thehumanoidlosestheforcefeedbackofthegrounddynamicreaction,i.e.thepossibilityofstabilizingitselfasawhole.Suchasituationcanarisebothinthesingle-supportanddouble-supportphasesofthegait.Inthatcaseanemergency-copingstrategycanbeapplied,whichprimarilyassumesthemovementsofthearmsinanattempttodiminishtheperturbationmoment,combinedwithanincreaseinstrideandmovingthelegasidetoenlargethetrace.Thiseventuallycanbringabouttheenlargementofthesupportpolygonwithinwhichistobelocatedanew,emergencyŽZMP.Ifthecriticalsituation(i.e.therobotsoverturning)isthusovercome,furtherrobotmotionmaybeinterruptedandrestartedintheformofaregulargait,or,ifpossible,themotionwillnotbeinterruptedbut,afterseveraltransitionalsteps,continuedinthesamemanneraspriortotheoccurrenceofthedisturbance.Itshouldbeemphasizedthatthisoutlinedemergency-copyingŽstrategyisanextremelydelicatetask,requiringspecialsensorslikegyroscopesandotherhigh-techtransducers,aswellasverypowerfulcontrolunitscapableofupdatingactuatordatainmicroseconds.Insteadofusingspecialhighlysophisticatedsensorsandfastmicroprocessorcontrolunitstostabilizethehumanoidrobotinrealtimeinthecaseofemergency,theproblemofdynamicinterventioncanbesolvedinanother,lesssophisticatedway.Theprocedurewouldconsistofarmmotionbywhichsomeaddi-tionalcontactswouldbemade(themechanismmayleanusingitshandsagainstsomeobjectinitssurroundings),resolvingthustheproblemofthemomentarylossofdynamicbalanceofthepreviousanthropomorphiccon“guration.Preventingtherobotssoverturningcanalsobeachievedbytemporaryrecon“gurationintoaquadrupedusingtheupperextremities,followedbyre-establishingthemotionintheformofregulardynamicallybalancedbipedgait.Namely,byensuringadditionalsupportpointsstaticequilibriummaybere-establishedandthedynamicallybal-ancedgaitcontinued.Thisprocedureofre-establishingdynamicequilibriummightbeconsideredasakindoftotalcomplianceprocedure.SomeprospectivetasksTheexpectationstobemetbyhumanoidrobotsareconstantlygrowingbothinnumberandspeci“city.Alreadytodaywecanenvisagetheambitioususeofserviceroboticsinthewidestsense,fromhelping(orreplacing)humansinhazardoussitu-ationsandhostileenvironmentstoentertainmentandsocializationŽofman-robotcommunication. April10,200422:17WSPC/191-IJHR00008 M.Vukobratovi´c&B.BorovacHenceitisnecessarytomakecertainimprovementsandre“nementstohumanoidrobots,bothinthedomainofcomplexityoftheirmechanisms(DOFs)andensuringnewperformance,whichontheotherhandwoulddemandtheinclusionofsomenew,previouslyneglectedphenomenainthemodelingandcontrolofhumanoidrobots.Letusmentiononlythosephenomena(limitedtothedynamics-controldomainonly)whosepresencecouldyieldnew,signi“cantlyimproved,performanceandcapabilitiesofhumanoidrobots:Elasto-dynamicsandincreasedcomplexityoftherobotfootformorerealisticdescriptionofthecontacttaskRobot-DynamicEnvironment,toenableappro-priatedynamiccontrolwithrespecttopositionandcontactforceofthedynamicreaction.Softnessofthetwo-linksemi-rigidfootinsteadoftheconventionallytreatedrigidfoot,asthisplaysanimportantroleintheappearanceofunpoweredDOFsbetweenthefootandtheground.Namely,insteadoftheunnaturaledgeaboutwhichthemechanismwouldrotateinthecaseofalargedisturbance,itismorerealistictoconsiderthecontactintheformofsomenarrowerareaofthearti“cialfootappearingasaresultofthementionedfootelasticity.ThisphenomenonisimportantbecauseoftheZMPposition,which,incontrasttotheconservativecaseofsuddenrotationaboutthefootedge(theoreticalline),isfoundonabor-derstripofthefoot,givingthusahigherchanceofusingamoreeectivecontrolstrategyinthecriticalregimesofthesynthesizedgait.Elasticityofhumanoidrobotjoints,especiallyoftheanklejoints,whereappro-priateactiveabsorberscouldbebuiltin,whosedampingwouldchangedependingontheimpactoftherobotsfootagainsttheground.Thisphenomenonhasbeeninitiallyconsideredinsomepapersfromthedomainofhumanoidrobotics.Inadditiontothevariabledampingcoecient,careshouldalsobepaidtothereal-izationofvariableactivestiness,whichrepresentsasomewhatmorecomplexcaseforimplementationinhumanoidrobots.Synthesisofdynamicposition-forcecontrolofarti“cialgaitinthecaseofelasticactivelydampedjointsandtheelastodynamiccharacterofthefoot.Resolvingtheproblemofquasi-continuoustransitionoftheZMPfromthesingle-supporttothedouble-supportgaitphase.Itshouldalsobeborneinmindthequasi-continuityoftheZMPtrajectoriesthatareapproximatelyrealizedattheirdiscretelocations.Whenanalyzingthein”uenceofthecharacterofZMPtra-jectoriesinrespectofthedegreeofanthropomorphismofhumanoidrobots,thelattercharacteristicshouldalsobeconsideredinrelationtotheincreaseinthenumberofDOFs.Smoothtransitionfromonewalkingpatterntoanother(e.g.transitionfromwalk-ingona”atsurfacetowalkingupstairsanddownstairs,avoidingobstacles,walkation,etc.).AspecialchallengerepresentstheindependentŽuseofhandsforanothertaskduringthewalk(e.g.takingobjectsfromthetableinpassingwithoutstoppingandtheirmanipulation,carryingheavyobjects,etc.). April10,200422:17WSPC/191-IJHR00008 Zero-MomentPoint—ThirtyFiveYearsofItsLifeAtthispointwewillalsobrie”yformulateanothermajortopicthatseemsinevitableorprospective.Assomeoftheseproblemshavealreadybeenrecognizedandelab-orated,wewillmentiononlythosetasksthathavenotbeenresolvedyet.ThetermgroundŽusuallymeanssomethingimmobile(perhapsdeformable,butimmobile).However,ageneralapproachrequirestheoptionofwalkingonamobilesupport.Moreover,suchsupportshouldnotbeconsideredasapurenonstationaryconstraintbutratherasadynamicsystemthatinteractswiththewalker.Thus,amobileplatformthathasitsowndynamicshastobeintroduced.TheplatformshouldhaveuptosixDOFs.Itisclearthattheplatformcanbemodeledindierentways.AconstructiveapproachmayrefertotheuseofspecialStewartplatformstructures,asshowninFig.5(a).Indescribingtheeectsthatshouldbetakenintoaccountwhenworkingonhumanorhumanoiddynamicswecometothecon“gurationofthesysteminthedynamicssimulatorGHDS(GeneralHuman/HumanoidDynamicsSimulator).ItisimportanttomakeadistinctionbetweentheGHDSandtestbedthatinvolvestherealdevices:robot,cameras,etc.[sketchedinFig.5(b)].Thefusionofthesetwosystemsmaybeconsideredasanultimategoal.Theabovetopicsconcerninghumanoidrobots,beingstillinamodestinitialstageornotyetformulated,areofcrucialimportancetoachievethosecapabilitiesofhumanoidrobotsthatcouldrealisticallymeethighrequirementsoftheirenvisagedapplications.4.ConclusionTheconceptofZMPhasandwillhaveanessentialroleinboththeoreticalconsid-erationsandthepracticaldevelopmentofhumanoidrobotsandbipedlocomotion.Afterseveraldecadesofitsapplicationitcanbenoticedthatinreferringtoit,probablybecausethenotionhasbecometrulyacceptedandcommonlyknown,theZMPhassometimesbeende“nedinaninsucientlypreciseandover-simpli“edway.HavinginmindthattheoriginalworksinwhichtheZMPconceptwasintroducedarenoteasilyaccessibletoallresearchers,especiallytoyoungerones,wethoughtitusefultorefreshthisnotionandremindreadersofitsoriginalmeaningandthusavoiditssuper“cialunderstandingandpossibleconfusion.Besidesthis,itisevidentthatthedevelopmentofhumanoidroboticsisgoinginthedirectionofincorporat-ingrobotsintointimateŽhumanenvironments,coexistenceandco-operationwithhumans(evenasapartneronthesametask),sothatitisrightlyexpectedthattheperformanceofrobotswillbecomecloserto,andinsomesegmentsevenbetterthan,thoseofhumans.Also,wehavetomentiontheimportantareaofserviceroboticsandtheroleofrobotsinhostileenvironments.Hence,initslastsectionsthispapertouchesuponsomeimportantbutstillunresolvedlocomotion-manipulationissues. April10,200422:17WSPC/191-IJHR00008 M.Vukobratovi´c&B.Borovac detail“A”: flexiblesole:flexiblesupport: TRUEGROUNDforcesand platform Fig.5.Modelofthegeneraltaskforensuringbipedsdynamicequilibrium. April10,200422:17WSPC/191-IJHR00008 Zero-MomentPoint—ThirtyFiveYearsofItsLifeReferences1.M.Vukobratovi´candD.Jurici´c,Contributiontothesynthesisofbipedgait,inProc.IFACSymp.TechnicalandBiologicalProblemonControl,Erevan,USSR,1968.2.M.Vukobratovi´candD.Jurici´c,Contributiontothesynthesisofbipedgait,inIEEETrans.Bio-MedicalEng.(1)(1969).3.D.Jurici´candM.Vukobratovi´MathematicalModelingofBipedWalkingSystems(ASMEPubl.,1972)72-WA/BHF-13.4.M.Vukobratovi´candYu.Stepanenko,Onthestabilityofanthropomorphicsystems,MathematicalBiosciences,1–37(1972).5.M.Vukobratovi´candYu.Stepanenko,Mathematicalmodelsofgeneralanthropomor-phicsystems,MathematicalBiosciences,191–242(1973).6.M.Vukobratovi´c,Howtocontrolthearticialanthropomorphicsystems,inIEEETrans.System,ManandCybernetics,497–507(1973).7.M.Vukobratovi´c,B.Borovac,D.SurlaandD.Stoki´BipedLocomotion—Dynamics,Stability,ControlandApplication(Springer-Verlag,Berlin,1990).8.I.Yamaguchi,A.TakanishiandI.Kato,Developmentofabipedwalkingrobotcom-pensationforthree—Axismomentbytrunkmotion,inProc.IEEE/RSJInt.Conf.IntelligentRobotandSystems,Yokohama,Japan,1993.9.J.Yamaguchi,E.Soga,S.InoueandA.Takanishi,Developmentofbipedalhumanoidrobot-controlmethodofwholebodycooperativedynamicbipedwalking,inProc.IEEEICRA,1999,pp.368–374.10.A.Goswami,Foot-rotationindicator(FRI)point:Anewgaitplanningtooltoevaluateposturalstabilityofbipedrobots,inProc.IEEEICRA,Detroit,1999,pp.47–52.11.K.Inoue,H.Yoshida,T.AraiandY.Mae,Mobilemanipulationofhumanoids—Realtimecontrolbasedonmanipulabilityandstability,inProc.IEEEICRASanFrancisco,CA,2000,pp.2217–2222.12.M.YagiandLumelsky,Bipedrobotlocomotioninsceneswithunknownobstacles,inProc.IEEEICRA,Detroit,Michigan,1999,pp.375–380.13.A.DasguptaandY.Nakamura,Makingfeasiblewalkingmotionofhumanoidrobotsfromhumanmotioncapturedata,inProc.IEEEICRA,Detroit,1999,pp.1044–1049.14.K.Hirai,M.Hirose,Y.HaikawaandT.Takenaka,ThedevelopmentofHondahumanoidrobot,inProc.IEEEInt.Conf.RoboticsandAutomation,Leuven,Belgium,1998,pp.1321–1326.15.T.ArakawaandT.Fukuda,Naturalmotionofbipedlocomotionrobotusinghier-archicaltrajectorygenerationmethodconsistingofGA,EP,layers,inProc.IEEEICRA,Albuquerque,New-Mexico,1997,pp.211–216.16.M.Sorli,C.Ferraresi,M.Kolarski,B.BorovacandM.Vukobratovi´c,Mechanicsofturinparallelrobot,Mech.MachTheory(1),51–77(1997).17.Y.Nakamura,H.Hirukawa,K.Yamane,S.Kajita,K.Yokoi,K.Tanie,M.Fujie,A.Takanishi,K.Fujiwara,T.Suehiro,N.Kita,Y.Kita,S.Hirai,F.Nagashima,Y.Murase,M.InobaandH.Inoue,V-HRP:Virtualhumanoidrobotplatform,Proc.Int.Conf.‘Humanoids2000’,Tokyo,Japan,2000. April10,200422:17WSPC/191-IJHR00008 M.Vukobratovi´c&B.Borovac MiomirVukobratovi´wasborninBotos,Serbia,1931.HereceivedhisB.Sc.andPh.D.degreesinMechanicalEngineeringfromtheUniversityofBelgradein1957and1964,respectively,andhisD.Sc.degreefromtheInstituteMashinovedeniya,Soviet(nowRussian)AcademyofScience,Moscow,1972.From1968hewasheadoftheBiodynamicsDepartment,thendirectoroftheLaboratoryforRoboticsandFlexibleAutomationandDirectoroftheRoboticsCenterrespectivelyatMihailoPupinInstitute,HehasservedasavisitingprofessorteachinggraduatecoursesinroboticsatseveraluniversitiesintheformerYugoslaviaandabroad.Heistheauthor/co-authorofmorethan200scienti“cpapersinthe“eldofroboticsandsystemtheory,haspublishedinleadinginternationaljournals,andisalsotheauthor/co-authorofabout360papersinproceedingsofinternationalconferencesandcongresses.Hehasalsoauthored/co-authored13researchmonographspublishedinEnglish,Japanese,Russian,ChineseandSerbian,twoadvancedtextbooksinroboticsinEnglish,andtenchaptersininternationalmonographsandhandbooks.Amongothers,heisaholderofJosephEngelbergerŽawardinroboticsforhispioneeringgloballyrecog-nizedresultsinappliedresearchandeducationinrobotics,awardedbytheRoboticIndustriesAssociationintheUSAin1996.Prof.Vukobratovi´cisafullmemberoftheSerbianAcademyforSciencesandArts,aforeignmemberoftheRussian(formerlySoviet)AcademyofSciences,afullmemberoftheInternationalAcademyofNonlinearSciences,andseveralotherforeignacademies,presidentofYugoslavAcademyofEngineering,aforeignfullmemberoftheInternationalEngineeringAcademy,Moscow,aforeignmemberoftheChineseAcademyofEngineering,anhonorarymemberoftheHungarianAcademyofEngineering,andothernationalacademies.HeisdoctorhonoriscausaofMoscowStateUniversitynamedafterM.V.Lomonosovandseveralotheruni-versitiesinEurope.BasedontheCitationIndex,hehasbeencitedabout1,350times.Prof.Vukobratovi´chaspresentedthirtyopeningandplenarylecturesatworldconferences,symposiaandcongresses,andhaslecturedbyinvitationatmorethan150scienti“cseminarsintheUSA,Japan,Russia,ChinaandEurope.Hismajorinterestisinthedevelopmentofecientcomputeraidedmodelingofroboticsystemsdynamics,inparticulardynamicnon-adaptiveandadaptivecontrolofnon-contactandcontacttasksinmanipulationrobotics,aswellasdynamicsmodeling,stabilityandcontrolinleggedlocomotion,especiallyhumanoidrobots. April10,200422:17WSPC/191-IJHR00008 Zero-MomentPoint—ThirtyFiveYearsofItsLife BranislavBorovacwasborninLeskovac,Serbia,1951.HereceivedhisM.Sc.andPh.D.degreesinMechanicalEngineer-ingfromtheUniversityofNoviSadin1982and1986,respec-tively.HebecameAssistantProfessorofEngineeringDesignin1987,AssistantProfessorofRoboticsin1988,AssociateProfessorofRoboticsin1993andsince1998,hehasbeenfullProfessorofRobotics,allattheFacultyofTechnicalSciences,UniversityofNoviSad.Heiscoauthoroftworesearchmonographpub-lishedbySpringer-Verlag(1990)andCRCPress(2001).Heistheauthor/coauthorof15scienti“cpapersinthe“eldofrobotics,publishedininternatinaljournals,aswellastheauthor/coauthorofabout50papersinproceedingsofinternationalconferencesandcongresses.Hisresearchinterestsincludebipedlocomotion,robotmodelingandcontrol,industrialrobotics,sensorsandsensorinformationintegration,forcesensorsandtheiruseincontacttasks,assembly,mechatronics,productdesignand”exiblesystems. April10,200422:17WSPC/191-IJHR00008 April10,200422:17WSPC/191-IJHR00008 InternationalJournalofHumanoidRoboticsVol.1,No.1(2004)157…173WorldScienti“cPublishingCompany ZERO-MOMENTPOINT—THIRTYFIVEYEARSOFITSLIFE
© 2021 docslides.com Inc.
All rights reserved.